Abstract:
The present invention relates to a composite, a high-frequency circuit substrate prepared therefrom and a process for preparing the same. Such composite includes (1) from 20 to 70 parts by weight of a thermosetting mixture, including (A) a thermosetting resin based on polybutadiene or a copolymer resin of polybutadiene and styrene having a molecular weight of 11,000 or less, being composed of carbon and hydrogen elements and containing 60% or more of vinyl groups, and (B) an ethylene-propylene rubber having a weight-average molecular weight of greater than 100,000 and less than 150,000 and a number-average molecular weight of greater than 60,000 and less than 100,000 and being in a solid state at room temperature; (2) from 10 to 60 parts by weight of a glass fiber cloth; (3) from 0 to 70 parts by weight of a powder filler; and (4) from 1 to 3 parts by weight of a curing initiator. The composite of the present invention has good solvent solubility and good process operability. The high-frequency circuit substrate made by using the composite has good high frequency dielectric properties and better thermal oxidative aging performance.
Abstract:
The present invention provides a process for preparing a pre-treated low Dk-type glass fabric for constituting a circuit board, comprising pre-treating low Dk-type glass fabric with a pre-treating varnish having a Dk close to the Dk of the used low Dk-type glass fabric at different temperatures and having a small Df. The present invention further provides a bonding sheet and a circuit board prepared thereby. The circuit boards prepared by the preparation process of the present invention have a Dk having small differences in warp and weft directions, and can effectively solve the problem of signal propagation delay. The circuit boards have a small Df, so as to have a small signal loss. Meanwhile, the cured, partially-cured or uncured dry glue obtained after drying the solvent of the pre-treating varnish has similar dielectric properties at different temperatures to the used low Dk-type glass fabric, so that the circuit boards have a very small signal propagation delay at different temperatures.
Abstract:
The present invention provides a siloxane-modified cyclotriphosphazene halogen-free flame retardant, and a preparation method and a use thereof. The siloxane-modified cyclotriphosphazene halogen-free flame retardant has the structural formula as shown in Formula I. In the siloxane-modified cyclotriphosphazene halogen-free flame retardant of the present invention, three kinds of structures of siloxane, aryl phosphorus oxygen compound and cyclotriphosphazene are built in one molecular formula, which combines the advantages of three structures, improves the compatibility between the flame retardant and resins, has a high flame retardant efficiency and a better char formation and can greatly increase the flame retardancy and stability of resin cured products.
Abstract:
Disclosed are a thermosetting resin composition, a prepreg made therefrom, a laminate clad with a metal foil, and a high-frequency circuit board, wherein the thermosetting resin composition contains thermosetting ingredients. The thermosetting ingredients include a phosphorus-containing monomer or a phosphorus-containing resin and another thermosetting resin containing an unsaturated group, and the phosphorus-containing monomer or the phosphorus-containing resin has a structure as shown in formula I. By using the phosphorus-containing monomer or the phosphorus-containing resin as a cross-linking agent of the other thermosetting resin containing an unsaturated group and by means of a cross-linking reaction of a large number of unsaturated double bonds in the resin, the high-frequency dielectric properties and high-temperature-resistance required by a circuit substrate are provided.
Abstract:
The present invention relates to a halogen-free thermosetting resin composition, and also a prepreg and a laminate for printed circuit prepared from the halogen-free thermosetting resin composition. The halogen-free thermosetting resin composition comprises, based on 100 parts by weight of organic solids, (A) from 30 to 60 parts by weight of a halogen-free epoxy resin, (B) from 5 to 30 parts by weight of a first curing agent of phosphorus-containing bisphenol, (C) from 5 to 30 parts by weight of a second curing agent of dicyclopentadiene novolac, and (D) a phosphorus-containing flame retardant. The prepreg and laminate for printed circuit prepared from the halogen-free thermosetting resin composition according to the present invention have high glass transition temperature, excellent dielectric properties, low water absorption, high thermal resistance and better process workability, and can fulfill halogen-free flame retardance and achieve the grade of UL94 V-0.
Abstract:
The present invention relates to a halogen-free thermosetting resin composition, and also a prepreg and a laminate for printed circuit prepared from the halogen-free thermosetting resin composition. The halogen-free thermosetting resin composition comprises, based on 100 parts by weight of organic solids, (A) from 30 to 60 parts by weight of a halogen-free epoxy resin, (B) from 5 to 30 parts by weight of a first curing agent of phosphorus-containing bisphenol, (C) from 5 to 30 parts by weight of a second curing agent of alkylphenol novolac, and (D) a phosphorus-containing flame retardant. The prepreg and laminate for printed circuit prepared from the halogen-free thermosetting resin composition according to the present invention have high glass transition temperature, excellent dielectric properties, low water absorption, high thermal resistance and better process workability, and can fulfill halogen-free flame retardance and achieve the grade of UL94 V-0.
Abstract:
The present invention relates to a halogen-free thermosetting resin composition, and also a prepreg and a laminate for printed circuit prepared from the halogen-free thermosetting resin composition. The halogen-free thermosetting resin composition comprises, based on 100 parts by weight of organic solids, (A) from 30 to 60 parts by weight of a halogen-free epoxy resin, (B) from 5 to 30 parts by weight of a first curing agent of phosphorus-containing bisphenol, (C) from 5 to 30 parts by weight of a second curing agent of alkylphenol novolac, and (D) a phosphorus-containing flame retardant. The prepreg and laminate for printed circuit prepared from the halogen-free thermosetting resin composition according to the present invention have high glass transition temperature, excellent dielectric properties, low water absorption, high thermal resistance and better process workability, and can fulfill halogen-free flame retardance and achieve the grade of UL94 V-0.
Abstract:
The present invention relates to a halogen-free thermosetting resin composition and also a prepreg and a laminate for printed circuits prepared from the halogen-free thermosetting resin composition. The halogen-free thermosetting resin composition comprises, based on 100 parts by weight of organic solids, (A) from 30 to 60 parts by weight of a halogen-free epoxy resin, (B) from 20 to 50 parts by weight of a compound containing dihydrobenzoxazine ring, (C) from 10 to 40 parts by weight of a phosphorus-containing bisphenol curing agent. The prepreg and laminate for printed circuits prepared from the halogen-free thermosetting resin composition according to the present invention have high glass transition temperature, excellent dielectric properties, low water absorption, high thermal resistance and better processability, and can fulfill halogen-free flame retardancy and achieve UL94 V-0 grade.
Abstract:
The present disclosure discloses a resin composition, and a prepreg, a laminate and a printed circuit board containing the same. The resin composition comprises 100 parts by weight of a halogen-free epoxy resin, 11-37 parts by weight of an active ester resin, and 40-66 parts by weight of a compound represented by Formula (I), wherein n is 2-15; Ac represents an acetyl group. The prepreg, laminate and printed circuit board prepared from such resin composition have a low dielectric loss factor, good flame retardancy, and also have high interlaminar adhesion and a low CTE.
Abstract:
Disclosed are a thermosetting resin composition, a prepreg made therefrom, a laminate clad with a metal foil, and a high-frequency circuit board, wherein the thermosetting resin composition contains thermosetting ingredients. The thermosetting ingredients include a phosphorus-containing monomer or a phosphorus-containing resin and a polyphenylene ether resin containing an unsaturated group, and the phosphorus-containing monomer or the phosphorus-containing resin has a structure as shown in formula I. By using the phosphorus-containing monomer or the phosphorus-containing resin as a cross-linking agent of the polyphenylene ether resin containing an unsaturated group and by means of a cross-linking reaction of a large number of unsaturated double bonds in the resin, the high-frequency dielectric properties and high-temperature-resistance required by a circuit substrate are provided.