摘要:
A method of producing a multi-layer ceramic substrate involves the steps of preparing compact blocks including a raw ceramic functional material to be the passive component, preparing a raw composite laminated member having a plurality of laminated ceramic green sheets containing a ceramic insulating material and wiring conductors and preliminarily providing spaces in the inside such that the compact blocks fit into the spaces, arranging sheet type bases made from a raw ceramic not sintered at the baking temperature of the composite laminated member on the principal plane at both ends with respect to the lamination direction of the raw composite laminated member, baking the raw composite laminated member with the raw composite laminated member interposed by the sheet type bases so as to restrain the contraction at a temperature not more than about 1000° C., and eliminating the unsintered sheet type bases.
摘要:
A method for manufacturing a multilayer ceramic substrate includes a firing step wherein low-temperature-sinterable ceramic material contained in green base layers and inorganic material contained in green constraining layers chemically react each other, whereby a reaction layer is formed along an interface between the green base layer and the green constraining layer. The reaction layer acts to enhance a bonding force between the green base layer and the green constraining layer.
摘要:
The present invention provides a method for readily and efficiently manufacturing a ceramic substrate having an excellent dimensional accuracy and small degree of warp comprising the steps of: preparing a non-sintered multilayer ceramic body formed by laminating ceramic layers and conductor layers; forming a multilayer ceramic body-with constraint layers by adhering a first constraint layer and a second constraint layer on one major surface and the other major surface, respectively, of the multilayer ceramic body, the first and second constraint layers being prepared by dispersing a ceramic powder that is not sintered under the sintering condition of the multilayer ceramic body; firing the multilayer ceramic body with the constraint layers under the firing condition of the multilayer ceramic body; and removing the first constraint layer and the second constraint layer after sintering the multilayer ceramic body, wherein the thickness of the first constraint layer is made to be larger than the thickness of the second constraint layer, and the first constraint layer is provided on one major surface that is more largely contracted by firing.
摘要:
The present invention provides a method for readily and efficiently manufacturing a ceramic substrate having an excellent dimensional accuracy and small degree of warp comprising the steps of: preparing a non-sintered multilayer ceramic body formed by laminating ceramic layers and conductor layers; forming a multilayer ceramic body with constraint layers by adhering a first constraint layer and a second constraint layer on one major surface and the other major surface, respectively, of the multilayer ceramic body, the first and second constraint layers being prepared by dispersing a ceramic powder that is not sintered under the sintering condition of the multilayer ceramic body; firing the multilayer ceramic body with the constraint layers under the firing condition of the multilayer ceramic body; and removing the first constraint layer and the second constraint layer after sintering the multilayer ceramic body, wherein the thickness of the first constraint layer is made to be larger than the thickness of the second constraint layer, and the first constraint layer is provided on one major surface that is more largely contracted by firing.
摘要:
The invention provides a method of producing a multi-layer ceramic substrate comprising a laminated member having a plurality of ceramic layers made of a ceramic insulating material and a wiring conductor, comprising the steps of: preparing a raw compact having the plurality of the laminated ceramic green sheets containing the ceramic insulating material and the wiring conductor; providing raw sheet type bases on the principal plane at both ends with respect to the lamination direction of the raw compact, the raw sheet type bases containing a ceramic not to be sintered at the baking temperature of the raw compact; baking the raw compact in the state interposed between the sheet type bases so as to obtain the laminated member; and eliminating the unsintered sheet type bases; wherein the heat expansion coefficient difference of the sheet type bases and the laminated member after baking is 2.5×10−6 degK−1 or more.
摘要:
A glass ceramic multilayer circuit board uses Ag as a conductive material, in which oxidation and diffusion of silver are suppressed. The glass ceramic multilayer circuit board is formed by stacking glass ceramic layers and conductor layers, and then simultaneously burning the layered product. The glass ceramic layers are made of a glass ceramic insulating material which is composed of a glass component and a ceramic component, and to which a metal powder of Cu, Ni or the like is added.
摘要:
Provided is a glass ceramic composition which can be fired at a temperature of 1000° C. or lower, and a sintered body of which has a low relative permittivity and a high Q value, stable temperature characteristic and high reliability, and is excellent in plating solution resistance. The glass ceramic composition provides a low dielectric constant layer for inclusion in a laminate glass ceramic substrate in a ceramic multilayer module. It includes a first ceramic having forsterite as the main constituent, a second ceramic having at least one of SrTiO3 and TiO2 as the main constituent, a third ceramic having BaZrO3 as the main constituent, a fourth ceramic having at least one of ZrO2 and MnO as the main constituent, and 3 weight % or more of a borosilicate glass containing Li2O, MgO, B2O3, SiO2 and ZnO, which further contains an additive constituent including at least one of CaO and SrO.
摘要:
A glass ceramic composition which can be fired at a low temperature and which has a high dielectric constant, a relatively small thermal expansion coefficient and a small temperature coefficient of dielectric constant is provided. The glass ceramic composition contains about 5% to 75% by weight of TiO2 powder, about 5% to 75% by weight of CaTiSiO5 powder and about 15% to 50% by weight of glass powder.
摘要:
A method for fabricating a multilayered ceramic board includes forming a green laminate, the green laminate including a plurality of green base layers containing a low-temperature sinterable ceramic material which is a ceramic powder and a glass component, and a binder; at least one green constraining layer disposed in contact with a principal surface of a specific green base layer, the green constraining layer containing an inorganic material powder which is not sintered at the sintering temperature of the low-temperature sinterable ceramic material; and wiring conductors; and firing the green laminate at the sintering temperature of the low-temperature sinterable ceramic material. The firing step includes a binder removal step and a sintering step for obtaining the sintered state of the low-temperature sinterable ceramic material in which the ceramic powder is densified while the glass component is fluidized. The rate of temperature increase from the binder removal step to the sintering step is set to be more than about ° C./minute.
摘要:
Provided is a glass ceramic composition which can be fired at a temperature of 1000° C. or lower, and a sintered body of which has a low relative permittivity and a high Q value, stable temperature characteristic and high reliability, and is excellent in plating solution resistance. The glass ceramic composition provides a low dielectric constant layer for inclusion in a laminate glass ceramic substrate in a ceramic multilayer module. It includes a first ceramic having forsterite as the main constituent, a second ceramic having at least one of SrTiO3 and TiO2 as the main constituent, a third ceramic having BaZrO3 as the main constituent, a fourth ceramic having at least one of ZrO2 and MnO as the main constituent, and 3 weight % or more of a borosilicate glass containing Li2O, MgO, B2O3, SiO2 and ZnO, which further contains an additive constituent including at least one of CaO and SrO.