Abstract:
A photoresist composition including: about 5% by weight to about 10% by weight of a binder resin; about 5% by weight to about 10% by weight of a photo-polymerization monomer; about 1% by weight to about 5% by weight of a photo initiator, which is activated by a light having a peak wavelength from about 400 nm to about 410 nm; about 5% by weight to about 10% by weight of a black-coloring agent, each based on a total weight of the photoresist composition; and a solvent.
Abstract:
A photoresist composition includes about 65% by weight to about 80% by weight of a mono-functional monomer, about 5% by weight to about 20% by weight of a di-functional monomer, about 1% by weight to about 10% by weight of a multi-functional monomer including three or more functional groups, about 1% by weight to about 5% by weight of a photoinitiator, and less than about 1% by weight of a surfactant, each based on a total weight of the photoresist composition.
Abstract:
A homogenous thin film layer is patterned into a transparent conductive portion and a non-conductive portion without use of etching through the thin film. Instead, conductive fine-wires which are convertible in one embodiment into non-conductive fine-wires are selectively converted into the non-conductive form. In an alternate embodiment, the homogenous thin film layer which includes conductive fine-wires is provided in a curable liquid form and selected portions of the liquid formed are cured into being affixed to substrate. Remaining portions can be washed away. In the case of display devices using transparent electrodes, a thin thin-film transistor array substrate is provided where the initially homogenous thin film which is and then converted into patterned conductive and non-conductive sections forms the pixel-electrodes and/or common electrode of the display device.
Abstract:
A maskless exposure device includes an exposure head including a digital micro-mirror device. The digital micro-mirror device is configured to transmit a source beam applied from an exposure source to a substrate. A system control part is configured to control the digital micro-mirror device by using a graphic data system file. The graphic data system file includes data for forming a source electrode, a drain electrode and a channel portion disposed between the source electrode and the drain electrode. The graphic system file includes data for forming the channel portion extending in a diagonal direction with respect to a scan direction of the exposure head.
Abstract:
An exposure apparatus includes a light source, an illuminating member, a projecting member, a stage, an inspecting member, and an information processing member. The light source is configured to provide a light in accordance with a pulse event generation (PEG) representing a period of light radiation. The illuminating member is configured to change the light into point lights. The projecting member is configured to project the point lights according to a photoresist shape extending in various directions. The point lights are projected on the stage. The inspecting member is configured to inspect a photoresist pattern formed by the projected point lights. The information processing member is configured to analyze different photoresist patterns corresponding to different PEGs to select one PEG from the different PEGs. The one PEG being associated with a minimum error in the various directions.
Abstract:
A metal wire etchant including persulfate, a sulfonate, a fluorine compound, an azole-based compound, an organic acid, a nitrate, and a chlorine compound, and a method of making the same.
Abstract:
A photoresist composition includes about 65% by weight to about 80% by weight of a mono-functional monomer, about 5% by weight to about 20% by weight of a di-functional monomer, about 1% by weight to about 10% by weight of a multi-functional monomer including three or more functional groups, about 1% by weight to about 5% by weight of a photoinitiator, and less than about 1% by weight of a surfactant, each based on a total weight of the photoresist composition.
Abstract:
A wet etching composition usable for etching a copper-based wiring layer includes between about 40% by weight to about 60% by weight of phosphoric acid, between about 1% by weight to about 10% by weight of nitric acid, between about 3% by weight to about 15% by weight of acetic acid, between about 0.01% by weight to about 0.1% by weight of a copper-ion compound, between about 1% by weight to about 10% by weight of a nitric salt, between about 1% by weight to about 10% by weight of an acetic salt, and a remainder of water
Abstract:
Exemplary embodiments of the present invention relate to a photoresist composition and method of forming a color filter using the same. A photoresist composition according to an exemplary embodiment includes about 5% by weight to about 10% by weight of a binder resin, about 5% by weight to about 10% by weight of a monomer, about 1% by weight to about 15% by weight of a photo initiator configured to be activated a light having a peak wavelength from about 400 nm to about 410 nm, about 1% by weight to about 10% by weight of a pigment, about 0.01% by weight to about 1% by weight of a pigment dispersing agent, and a solvent.
Abstract:
A sealing composition and a method of manufacturing a display panel using the sealing composition are disclosed. The sealing composition includes about 10% by weight to about 80% by weight of a denatured epoxy resin having a methacrylate group, about 5% by weight to about 40% by weight of a photo-curing acrylate monomer, about 1% by weight to about 10% by weight of a heat-curing agent, about 1% by weight to about 10% by weight of a photo-polymerization initiator, about 5% by weight to about 50% by weight of a filler, about 1% by weight to about 10% by weight of a flexibility improving agent and about 0.001% by weight to about 8% by weight of an additive.