Abstract:
A memory device and method for providing the memory device are described. The memory device includes word lines, a first plurality of bit lines, a second plurality of bit lines and selectorless memory cells. Each selectorless memory cell is coupled with a word line, a first bit line of the first plurality of bit lines and a second bit line of the second plurality of bit lines. The selectorless memory cell includes first and second magnetic junctions. The first and second magnetic junctions are each programmable using a spin-orbit interaction torque. The word line is coupled between the first and second magnetic junctions. The first and second bit lines are coupled with the first and second magnetic junctions, respectively. The selectorless memory cell is selected for a write operation based on voltages in the word line, the first bit line and the second bit line.
Abstract:
A magnetic junction, a memory using the magnetic junction and method for providing the magnetic junction are described. The magnetic junction includes first and second reference layers, a main barrier layer, a free layer, an engineered secondary barrier layer and a second reference layer. The free layer is switchable between stable magnetic states when a write current is passed through the magnetic junction. The main barrier layer is between the first reference layer and the free layer. The secondary barrier layer is between the free layer and the second reference layer. The engineered secondary barrier layer has a resistance and a plurality of regions having a reduced resistance less than the resistance. The free and reference layers each has a perpendicular magnetic anisotropy energy and an out-of-plane demagnetization energy less than the perpendicular magnetic anisotropy energy.
Abstract:
Magnetic junctions usable in a magnetic device and a method for providing the magnetic junctions are described. A patterned seed layer is provided. The patterned seed layer includes magnetic seed islands interspersed with an insulating matrix. At least a portion of the magnetoresistive stack is provided after the patterned seed layer. The magnetoresistive stack includes at least one magnetic segregating layer. The magnetic segregating layer(s) include at least one magnetic material and at least one insulator. The method anneals the at least the portion of the magnetoresistive stack such that the at least one magnetic segregating layer segregates. The constituents of the magnetic segregating layer segregate such that portions of magnetic material(s) align with the magnetic seed islands(s) and such that portions of the insulator(s) align with the insulating matrix.
Abstract:
A magnetic memory cell includes: a first spin-orbit interaction active layer; a first magnetic free layer on the first spin-orbit interaction active layer, the first magnetic free layer having a changeable magnetization; a first nonmagnetic spacer layer on the first magnetic free layer; a reference layer having a fixed magnetization on the first nonmagnetic spacer layer; a second nonmagnetic spacer layer on the reference layer; a second magnetic free layer on the second nonmagnetic spacer layer, the second magnetic free layer having a changeable magnetization; and a second spin-orbit interaction active layer on the second magnetic free layer.
Abstract:
A method for providing a magnetic junction usable in a magnetic device and the magnetic junction are described. The method includes providing a free layer, a pinned layer and a nonmagnetic spacer layer between the free layer and the pinned layer. The free layer is switchable between stable magnetic states when a write current is passed through the magnetic junction. At least one of the steps of providing the free layer and providing the pinned layer includes providing magnetic and sacrificial layers and performing two anneals of the sacrificial and magnetic layers. The magnetic layer includes a glass-promoting component and is amorphous as-deposited. The first anneal is at a first temperature exceeding 300 degrees Celsius and not exceeding 450 degrees Celsius. The second anneal is at a second temperature greater than the first temperature and performed after the first anneal. The sacrificial layer is removed.
Abstract:
A magnetic memory is described. In one aspect, the magnetic memory includes magnetic junctions and at least one semi-spin valve (SSV) line adjacent to the magnetic junctions. Each magnetic junction includes a magnetic free layer. The SSV line(s) include a ferromagnetic layer and a nonmagnetic layer between the ferromagnetic layer and the magnetic junctions. The SSV line(s) are configured to exert a spin accumulation induced torque on at least a portion of the magnetic junctions due to an accumulation of spin polarized current carriers from a current that is substantially in-plane. The free layer is configured to be written using at least the spin accumulation induced torque. In another aspect, the magnetic memory includes magnetic memory cells and at least one spin torque (ST) line that is analogous to the SSV line. Each magnetic memory cell includes magnetic junction(s) analogous to those above and magnetoelectric selection device(s).
Abstract:
A magnetic device and method for programming the magnetic device are described. The magnetic device includes a plurality of magnetic junctions and at least one spin-orbit interaction (SO) active layer having a plurality of sides and an axis. The SO active layer(s) carry a current in direction(s) substantially perpendicular to the plurality of sides along the axis. Each of the magnetic junction(s) is adjacent to the sides and substantially surrounds a portion of the SO active layer. Each magnetic junction includes a free layer, a reference layer and a nonmagnetic spacer layer between the pinned and free layers. The SO active layer(s) exert a SO torque on the free layer due to the current passing through the SO active layer(s). The free layer is switchable between stable magnetic states. The free layer may be written using the current and, in some aspects, another current driven through the magnetic junction.
Abstract:
A method of reading information stored in a magnetic memory. In a magnetic memory comprising a magnetic tunnel junction including a first reference layer and a free layer, and a spin orbit active (SO) line adjacent to the first reference layer of the magnetic tunnel junction, first and second currents are passed through the SO line so as to achieve two different directions of a magnetic moment of the first reference layer. Two electrical characteristics of the magnetic tunnel junction are determined, the two electrical characteristics corresponding to the two different directions of the magnetic moment of the first reference layer. These two electrical characteristics are then compared to determine the value of the stored information.
Abstract:
A magnetic device and method for programming the magnetic device are described. The magnetic device includes a plurality of magnetic junctions and at least one spin-orbit interaction (SO) active layer having a plurality of sides. The SO active layer(s) carry a current in direction(s) substantially perpendicular to the plurality of sides. Each of the magnetic junction(s) is adjacent to the sides and substantially surrounds a portion of the SO active layer. Each magnetic junction includes a free layer, a reference layer and a nonmagnetic spacer layer between the pinned and free layers. The SO active layer(s) exert a SO torque on the free layer due to the current passing through the SO active layer(s). The free layer is switchable between stable magnetic states. The free layer may be written using the current and, in some aspects, another current driven through the magnetic junction.
Abstract:
A memory device and method for providing the memory device are described. The memory device includes word lines, a first plurality of bit lines, a second plurality of bit lines and selectorless memory cells. Each selectorless memory cell is coupled with a word line, a first bit line of the first plurality of bit lines and a second bit line of the second plurality of bit lines. The selectorless memory cell includes first and second magnetic junctions. The first and second magnetic junctions are each programmable using a spin-orbit interaction torque. The word line is coupled between the first and second magnetic junctions. The first and second bit lines are coupled with the first and second magnetic junctions, respectively. The selectorless memory cell is selected for a write operation based on voltages in the word line, the first bit line and the second bit line.