摘要:
A method of acquiring distance information about a subject is provided. The method may include: determining a number of a plurality of lights to be emitted to the subject; emitting the determined number of the plurality of lights to the subject; modulating the plurality of lights returning from the subject; determining a weight based on at least one of the plurality of lights emitted to the subject and an emission order of the plurality of lights; and acquiring distance information about the subject by applying the weight to each of the modulated plurality of lights. According to the method, an error is efficiently reduced based on the number of the plurality of lights projected onto the subject.
摘要:
A three-dimensional (3D) image sensor module including: an oscillator configured to output a distortion-compensated oscillation frequency as a driving voltage of a sine wave biased with a bias voltage; an optical shutter configured to vary transmittance of reflective light reflected from a subject, according to the driving voltage, and to modulate the reflective light into at least two optical modulation signals having different phases; and an image generator configured to generate image data about the subject, the image data including depth information that is calculated based on a difference between the phases of the at least two optical modulation signals
摘要:
Provided is an apparatus and method of recognizing a movement of a subject. The apparatus includes a light source configured to emit light to the subject and an image sensor configured to receive light reflected from the subject. The apparatus includes a processor configured to detect a pixel that is receiving the reflected light, the pixel being included in a pixel array of the image sensor. The processor is configured to track the movement of the subject based on a change in a position of the detected pixel.
摘要:
A time of flight (ToF) measuring apparatus and an image processing method for reducing blur of a depth image in the ToF measuring apparatus are provided. The apparatus senses infrared (IR) light reflected by a subject and incident via an optical shutter, models a spread characteristic of the IR light based on an intensity distribution of the sensed IR light, and acquires a sharpening filter by using the modeled spread characteristic.
摘要:
An apparatus and method for obtaining a depth image are provided. The apparatus may include a light source configured to emit first light to a first region of an object for a first time period and emit second light to a second region of the object for a second time period, the first light and the second light respectively being reflected from the first region and the second region; and an image obtainer configured to obtain a first partial depth image based on the reflected first light, obtain a second partial depth image based on the reflected second light, and obtain a first depth image of the object based on the first partial depth image and the second partial depth image.
摘要:
An optical modulator is provided, including a lower reflection layer, an active layer formed on the lower reflection layer, and an upper reflection layer formed on the active layer. The active layer includes a multiple quantum well structure including a quantum well layer and a quantum barrier layer. The upper reflection layer includes a dielectric material. A plurality of micro cavity layers are included in the upper reflection layer.
摘要:
A gesture detecting apparatus including a light emitter configure to emit light towards an object, a camera configured to capture light emitted from the light emitter and reflected by the object, and a signal controller configured to control the light emitter and the camera, in which the light emitter comprises a first light and second light, at least one of which is configured to emit light having non-monotonic intensity characteristics.
摘要:
A three-dimensional (3D) image sensor device and an electronic apparatus including the 3D image sensor device are provided. The 3D image sensor device includes: a shutter driver that generates a driving voltage of a sine wave biased with a first bias voltage, from a loss-compensated recycling energy; an optical shutter that varies transmittance of reflective light reflected from a subject, according to the driving voltage, and modulates the reflective light to generate at least two optical modulation signals having different phases; and an image generator that generates 3D image data for the subject which includes depth information calculated based on a phase difference between the at least two optical modulation signals.
摘要:
A depth image generating apparatus includes a light source configured to emit light; an optical shutter provided on a path of the light reflected by an object and configured to modulate a waveform of the reflected light by changing a transmissivity of the optical shutter with respect to the reflected light; a driver configured to apply a driving voltage to the light source and a driving voltage to the optical shutter; a temperature measurer configured to measure a temperature of the optical shutter; a controller configured to control driving voltages; and a depth information obtainer configured to generate an image corresponding to the reflected light that passes through the optical shutter, extract a phase difference between a phase of the light emitted by the light source to the object and a phase of the reflected light, and obtain depth information regarding the object based on the phase difference.
摘要:
Provided are a three-dimensional (3D) camera including a wavelength-variable light source for directly measuring transmittance and a method of measuring the transmittance. The 3D camera includes, as well as a light source, a transmission type shutter, and an image sensor, and a wavelength-variable light source capable of irradiating a light with a variable wavelength without being thermally affected by the light source, the image sensor, and the transmission type shutter. The wavelength-variable light source may directly measure a change in transmittance by irradiating light toward the transmission type shutter while the 3D camera operates.