Abstract:
An infrared detector and an infrared sensor including the infrared detector are provided. The infrared detector includes a plurality of quantum dots spaced apart from each other and including a first component, a first semiconductor layer covering the plurality of quantum dots, and a second semiconductor layer covering the first semiconductor layer.
Abstract:
An optical modulator is provided, including a lower reflection layer, an active layer formed on the lower reflection layer, and an upper reflection layer formed on the active layer. The active layer includes a multiple quantum well structure including a quantum well layer and a quantum barrier layer. The upper reflection layer includes a dielectric material. A plurality of micro cavity layers are included in the upper reflection layer.
Abstract:
Provided are a transmission type high-absorption optical modulator and a method of manufacturing the transmission type high-absorption optical modulator. The optical modulator includes: a substrate; a lower distributed Bragg reflector (DBR) layer on the substrate; a lower clad layer on the lower DBR layer; an active layer that is formed on the lower clad layer and includes a quantum well layer and a quantum barrier layer; an upper clad layer on the active layer; an upper DBR layer on the upper clad layer; and a doping layer that supplies carriers to the quantum well layer. In the optical modulator, the doping layer may be included in the quantum barrier layer or in at least one of the upper and lower clad layers.
Abstract:
A skin care apparatus having a moisture distribution image photographing function includes a frame having at least one function and a moisture distribution image photographing apparatus mounted on the frame, the moisture distribution image photographing apparatus including a substrate, an image sensor mounted on the substrate, and a lens that collects incident light on the image sensor, the substrate including a circuit module for driving the image sensor and processing an image obtained through the image sensor, and the image sensor including a moisture sensor array in which the center of a main absorption wavelength is in a short wavelength infrared (SWIR) ray band.
Abstract:
A depth image measuring camera includes an illumination device configured to irradiate an object with light, and a light-modulating optical system configured to receive the light reflected from the object. The depth image measuring camera includes an image sensor configured to generate an image of the object by receiving light incident on the image sensor that passes through the light-modulating optical system. The light-modulating optical system includes a plurality of lenses having a same optical axis, and an optical modulator configured to operate in two modes for measuring a depth of the object.
Abstract:
A transmissive optical shutter and a method of fabricating the same are provided. The transmissive optical shutter includes a first contact layer, an epitaxial layer disposed over the first contact layer, the epitaxial layer being configured to modulate intensity of incident light having a specific wavelength, a second contact layer disposed on the epitaxial layer, a first electrode disposed on the first contact layer, at least one second electrode disposed on the second contact layer, and a substrate disposed under the first contact layer.
Abstract:
An optical device includes an active layer that includes at least two outer barriers and at least one coupled quantum well that is inserted between the at least two outer barriers. Each coupled quantum well includes at least three quantum well layers and at least two coupling barriers that are respectively provided between the at least three quantum well layers. Thicknesses of two quantum well layers disposed at opposite end portions of the at least three quantum well layers are less than a thickness of the other quantum well layer disposed between the two quantum well layers disposed at the opposite end portions. A bandgap of the two quantum well layers disposed at the opposite end portions may be higher than a bandgap of the other quantum well layer disposed between the two quantum well layers.
Abstract:
Provided is an infrared modulator including a silicon substrate, a multiple buffer layer on the silicon substrate, the multiple buffer layer including indium phosphide (InP), a first type semiconductor layer on the multiple buffer layer, the first type semiconductor layer including InP, a light absorption layer on the first type semiconductor layer, the light absorption layer including a quantum well structure including indium gallium arsenic phosphide (InGaAsP), and a second type semiconductor layer on the light absorption layer, the second type semiconductor layer including InP.
Abstract:
A light detecting device includes a light absorbing layer configured to absorb light in a wavelength range from visible light to short-wave infrared (SWIR); a first semiconductor layer provided on a first surface of the light absorbing layer; an anti-reflective layer provided on the first semiconductor layer and comprising a material having etch selectivity with respect to the first semiconductor layer; and a second semiconductor layer provided on a second surface of the light absorbing layer. The first semiconductor layer has a thickness less than 500 nm so as to be configured to allow light to transmit therethrough in the wavelength range from visible light to SWIR.
Abstract:
Provided is an optical device including an active layer, which includes two outer barriers and a coupled quantum well between the two outer barriers. The coupled quantum well includes a first quantum well layer, a second quantum well layer, a third quantum well layer, a first coupling barrier between the first quantum well layer and the second quantum well layer, and a second coupling barrier between the second quantum well layer and the third quantum well layer. The second quantum well layer is between the first quantum well layer and the third quantum well layer. An energy band gap of the second quantum well layer is less than an energy band gap of the first quantum well layer, and an energy band gap of the third quantum well layer is equal to or less than the energy band gap of the second quantum well layer.