摘要:
A photovoltaic device includes a composition modulated semiconductor structure including a p-doped first semiconductor material layer, a first intrinsic compositionally-graded semiconductor material layer, an intrinsic semiconductor material layer, a second intrinsic compositionally-graded semiconductor layer, and an n-doped first semiconductor material layer. The first and second intrinsic compositionally-graded semiconductor material layers include an alloy of a first semiconductor material having a greater band gap width and a second semiconductor material having a smaller band gap with, and the concentration of the second semiconductor material increases toward the intrinsic semiconductor material layer in the first and second compositionally-graded semiconductor material layers. The photovoltaic device provides an open circuit voltage comparable to that of the first semiconductor material, and a short circuit current comparable to that of the second semiconductor material, thereby increasing the efficiency of the photovoltaic device.
摘要:
A photovoltaic device includes a composition modulated semiconductor structure including a p-doped first semiconductor material layer, a first intrinsic compositionally-graded semiconductor material layer, an intrinsic semiconductor material layer, a second intrinsic compositionally-graded semiconductor layer, and an n-doped first semiconductor material layer. The first and second intrinsic compositionally-graded semiconductor material layers include an alloy of a first semiconductor material having a greater band gap width and a second semiconductor material having a smaller band gap with, and the concentration of the second semiconductor material increases toward the intrinsic semiconductor material layer in the first and second compositionally-graded semiconductor material layers. The photovoltaic device provides an open circuit voltage comparable to that of the first semiconductor material, and a short circuit current comparable to that of the second semiconductor material, thereby increasing the efficiency of the photovoltaic device.
摘要:
A lost cost method for fabricating SOI substrates is provided. The method includes forming a stack of p-type doped amorphous Si-containing layers on a semiconductor region of a substrate by utilizing an evaporation deposition process. A solid phase recrystallization step is then performed to convert the amorphous Si-containing layers within the stack into a stack of p-type doped single crystalline Si-containing layers. After recrystallization, the single crystalline Si-containing layers are subjected to anodization and at least an oxidation step to form an SOI substrate. Solar cells and/or other semiconductor devices can be formed on the upper surface of the inventive SOI substrate.
摘要:
A p-type field effect transistor (PFET) having a compressively stressed channel and an n-type field effect transistor (NFET) having a tensilely stressed channel are formed. In one embodiment, a silicon-germanium alloy is employed as a device layer, and the source and drain regions of the PFET are formed employing embedded germanium-containing regions, and source and drain regions of the NFET are formed employing embedded silicon-containing regions. In another embodiment, a germanium layer is employed as a device layer, and the source and drain regions of the PFET are formed by implanting a Group IIIA element having an atomic radius greater than the atomic radius of germanium into portions of the germanium layer, and source and drain regions of the NFET are formed employing embedded silicon-germanium alloy regions. The compressive stress and the tensile stress enhance the mobility of charge carriers in the PFET and the NFET, respectively.
摘要:
A p-type field effect transistor (PFET) having a compressively stressed channel and an n-type field effect transistor (NFET) having a tensilely stressed channel are formed. In one embodiment, a silicon-germanium alloy is employed as a device layer, and the source and drain regions of the PFET are formed employing embedded germanium-containing regions, and source and drain regions of the NFET are formed employing embedded silicon-containing regions. In another embodiment, a germanium layer is employed as a device layer, and the source and drain regions of the PFET are formed by implanting a Group IIIA element having an atomic radius greater than the atomic radius of germanium into portions of the germanium layer, and source and drain regions of the NFET are formed employing embedded silicon-germanium alloy regions. The compressive stress and the tensile stress enhance the mobility of charge carriers in the PFET and the NFET, respectively.
摘要:
A germanium-containing layer is deposited on a single crystalline bulk silicon substrate in an ambient including a level of oxygen partial pressure sufficient to incorporate 1%-50% of oxygen in atomic concentration. The thickness of the germanium-containing layer is preferably limited to maintain some degree of epitaxial alignment with the underlying silicon substrate. Optionally, a graded germanium-containing layer can be grown on, or replace, the germanium-containing layer. An at least partially crystalline silicon layer is subsequently deposited on the germanium-containing layer. A handle substrate is bonded to the at least partially crystalline silicon layer. The assembly of the bulk silicon substrate, the germanium-containing layer, the at least partially crystalline silicon layer, and the handle substrate is cleaved within the germanium-containing layer to provide a composite substrate including the handle substrate and the at least partially crystalline silicon layer. Any remaining germanium-containing layer on the composite substrate is removed.
摘要:
A germanium-containing layer is deposited on a single crystalline bulk silicon substrate in an ambient including a level of oxygen partial pressure sufficient to incorporate 1%-50% of oxygen in atomic concentration. The thickness of the germanium-containing layer is preferably limited to maintain some degree of epitaxial alignment with the underlying silicon substrate. Optionally, a graded germanium-containing layer can be grown on, or replace, the germanium-containing layer. An at least partially crystalline silicon layer is subsequently deposited on the germanium-containing layer. A handle substrate is bonded to the at least partially crystalline silicon layer. The assembly of the bulk silicon substrate, the germanium-containing layer, the at least partially crystalline silicon layer, and the handle substrate is cleaved within the germanium-containing layer to provide a composite substrate including the handle substrate and the at least partially crystalline silicon layer. Any remaining germanium-containing layer on the composite substrate is removed.
摘要:
A germanium-containing layer is deposited on a single crystalline bulk silicon substrate in an ambient including a level of oxygen partial pressure sufficient to incorporate 1%-50% of oxygen in atomic concentration. The thickness of the germanium-containing layer is preferably limited to maintain some degree of epitaxial alignment with the underlying silicon substrate. Optionally, a graded germanium-containing layer can be grown on, or replace, the germanium-containing layer. An at least partially crystalline silicon layer is subsequently deposited on the germanium-containing layer. A handle substrate is bonded to the at least partially crystalline silicon layer. The assembly of the bulk silicon substrate, the germanium-containing layer, the at least partially crystalline silicon layer, and the handle substrate is cleaved within the germanium-containing layer to provide a composite substrate including the handle substrate and the at least partially crystalline silicon layer. Any remaining germanium-containing layer on the composite substrate is removed.
摘要:
A method of fabricating a semiconductor device that may begin with providing a semiconductor substrate including a first device region including a silicon layer in direct contact with a buried dielectric layer, a second device region including a silicon germanium layer in direct contact with the buried dielectric layer, and a third device region with a silicon doped with carbon layer. At least one low power semiconductor device may then be formed on the silicon layer within the first device region of the semiconductor substrate. At least one p-type semiconductor device may be formed on the silicon germanium layer of the second device region of the semiconductor substrate. At least one n-type semiconductor device may be formed on the silicon doped with carbon layer of the third device region of the semiconductor substrate.
摘要:
A method of fabricating a semiconductor device that may begin with providing a semiconductor substrate including a first device region including a silicon layer in direct contact with a buried dielectric layer, a second device region including a silicon germanium layer in direct contact with the buried dielectric layer, and a third device region with a silicon doped with carbon layer. At least one low power semiconductor device may then be formed on the silicon layer within the first device region of the semiconductor substrate. At least one p-type semiconductor device may be formed on the silicon germanium layer of the second device region of the semiconductor substrate. At least one n-type semiconductor device may be formed on the silicon doped with carbon layer of the third device region of the semiconductor substrate.