Abstract:
A baffle plate assembly, configured to be coupled to a substrate holder in a plasma processing system, comprises a baffle plate having one or more openings to permit the passage of gas there through, wherein the coupling of the baffle plate to the substrate holder facilitates auto-centering of the baffle plate in the plasma processing system. For example, a centering ring mounted in the substrate holder can comprise a centering feature configured to couple with a mating feature on the baffle plate. After initial assembly of the plasma processing system, the baffle plate can be replaced and centered within the plasma processing system without disassembly and re-assembly of the substrate holder.
Abstract:
A thermally zoned substrate holder including a substantially cylindrical base having top and bottom surfaces configured to support a substrate. A plurality of temperature control elements are disposed within the base. An insulator thermally separates the temperature control elements. The insulator is made from an insulting material having a lower coefficient of thermal conductivity than the base (e.g., a gas- or vacuum-filled chamber).
Abstract:
An apparatus for monitoring film deposition on a chamber wall in a process chamber. The apparatus includes a surface acoustic wave device provided on the chamber wall. The surface acoustic wave device is actuated to achieve a resonance frequency, and the resonance frequency produced is detected to determine whether a critical thickness of film on the wall of the chamber has been achieved, where an amount of decrease in the resonance frequency is proportional to a thickness of film on the chamber wall. The process chamber is cleaned when the resonance frequency detected falls within a first predetermined range.
Abstract:
A plasma processing system includes a chamber containing a plasma processing region and a chuck constructed and arranged to support a substrate within the chamber in the processing region. The plasma processing system further includes at least one gas injection passage in communication with the chamber and configured to facilitate removal of particles from the chamber by passing purge gas therethrough. In one embodiment, the plasma processing system can include an electrode configured to attract or repel particles in the chamber by electrostatic force when the electrode is biased with DC or RF power. A method of processing a substrate in a plasma processing system includes removing particles in a chamber of the plasma processing system by supplying purge gas through at least one gas injection passage in communication with the chamber.
Abstract:
An electrode plate, configured to be coupled to an electrode in a plasma processing system, comprises a plurality of gas injection holes configured to receive gas injection devices. The electrode plate comprises three or more mounting holes, wherein the electrode plate is configured to be coupled with an electrode in the plasma processing system by aligning and coupling the three or more mounting holes with three or more mounting screws attached to the electrode.
Abstract:
The present invention provides a diagnostic system for plasma processing, wherein the diagnostic system comprises a multi-modal resonator, a power source, a detector, and a controller. The controller is coupled to the power source and the detector and it is configured to provide a man-machine interface for performing several monitoring and controlling functions associated with the diagnostic system including: a Gunn diode voltage monitor, a Gunn diode current monitor, a varactor diode voltage monitor, a detector voltage monitor, a varactor voltage control, a varactor voltage sweep control, a resonance lock-on control, a graphical user control, and an electron density monitor. The diagnostic system can further provide a remote controller coupled to the controller and configured to provide a remote man-machine interface. The remote man-machine interface. The remote man-machine interface can provide a graphical user interface in order to permit remote control of the diagnostic system by an operator. In addition, the present invention provides several methods of controlling the diagnostic system in order to perform both monitor and control functions.
Abstract:
A chemical processing system includes a mixing chamber coupled to the chemical processing system. A stream of first process gas and a stream of second process gas are introduced into the mixing chamber. The stream of first process gas and the stream of second process gas interact with each other to form a mixed process gas, which is supplied to the substrate for processing thereof. A method of mixing process gas in a mixing chamber of a chemical processing system is provided. The method includes injecting a stream of first process gas and a stream of second process gas into the mixing chamber, causing the streams of the first process gas and the second process gas to interact and mixing the first process gas and the second process gas in the mixing chamber to form a mixed process gas. A mixing system is also provided.
Abstract:
A method for monitoring consumption of a component, including the steps of emitting a radiation beam onto a first area of the component and detecting a portion of the radiation beam that is refracted by the component. A radiation level signal is generated based at least on a strength of the detected portion of the radiation beam, and a thickness of the component is determined based on the radiation level signal. The thickness of the component is compared to a predetermined thickness value, and a status signal is generated when the comparing step determines that the thickness of the component is substantially equal to or below the predetermined thickness value. When the comparing step determines that the thickness of the component is greater than the predetermined thickness value, the component is exposed to a process that can erode at least a portion of the component.
Abstract:
A high pressure processing system including a chamber configured to house a substrate. A fluid introduction system includes at least one composition supply system configured to supply a first composition and a second composition, and at least one fluid supply system configured to supply a fluid. The fluid supply system is configured to alternately and discontinuously introduce the first composition and the second composition to the chamber within the fluid.
Abstract:
A method and an apparatus utilized for thermal processing of substrates during semiconductor manufacturing. The method includes heating the substrate to a predetermined temperature using a heating assembly, cooling the substrate to the predetermined temperature using a cooling assembly located such that a thermal conductance region is provided between the heating and cooling assemblies, and adjusting a thermal conductance of the thermal conductance region to aid in heating and cooling of the substrate. The apparatus includes a heating assembly, a cooling assembly located such that a thermal conductance region is provided between the heating and cooling assemblies, and a structure or configuration for adjusting a thermal conductance of the thermal conductance region.