Abstract:
A method for fabricating a DRAM cell having a crown-type capacitor over a semiconductor substrate is disclosed. The method includes steps of: (a) forming a transistor over the semiconductor substrate; (b) forming an insulating layer over the transistor; (c) selectively etching the insulating layer to form a contact opening; (d) forming a first conducting layer over the insulating layer and filling into the contact opening; (e) forming an etching stop layer and a mask layer over the first conducting layer; (f) pattering the mask layer to form a plurality of openings; (g) forming a dielectric spacer on the sidewall of the mask layer, and removing exposed portions of the etching stop layer; (h) anisotropically etching the mask layer and the first conducting layer by using the dielectric spacer as a mask, to expose, respectively, the etching stop layer and the insulating layer; (i) removing uncovered etching stop layer to expose the first conducting layer; (j) anisotropically etching the first conducting layer to a predetermined depth by using the dielectric spacer as a mask, thereby forming a crown-type storage electrode; (k) removing the dielectric spacer and the etching stop layer; (l) forming a dielectric layer over exposed portions of the storage electrode; and (m) forming a second conducting layer as an opposite electrode over the dielectric layer.
Abstract:
The present invention discloses a DRAM structure with multiple memory cells sharing the same bit-line contact. The DRAM structure of the present invention comprises: a substrate; an active region formed on the substrate, with a center region and a plurality of protrusion regions connecting to the two sides of the center region; a plurality of word-lines, disconnected from each other, each crossing the corresponding protrusion region; a plurality of channel regions, formed where the protrusion region overlaps with the word-lines; a plurality of source regions, formed at the outer areas of the channel regions; a sharing drain region, formed at the center region of the active region; a bit-line contact, formed on surface of the sharing drain region; a bit-line, crossing the center region and electrically connected to the sharing drain region via the bit-line contact; a plurality of capacitors, electrically connected to the source regions; and a plurality of metal lines, electrically connected to the corresponding word-lines.
Abstract:
A simplified process for forming a thin film transistor matrix for a liquid crystal display is disclosed. By forming and patterning a conductive layer overlying a TFT unit, a data line, a first connection line between the TFT unit and the data line, and a second connection line between the TFT unit and a pixel electrode can be simultaneously formed in the forming and patterning step. Furthermore, after a passivation layer is applied to protect the TFT matrix, an isolation window area, a contact hole and a TAB window can be created in a single patterning step. Therefore, masking steps can be reduced so as to simplify the process. On the other hand, owing to the first connection line for connecting the TFT unit and the scan line is of the same material as the scan line, the resistivity of the connection line is inherently low. Therefore, a TFTLCD of a large area can be made according to this process.
Abstract:
The present invention discloses a DRAM structure with multiple memory cells sharing the same bit-line contact. The DRAM structure of the present invention comprises: a substrate; an active region formed on the substrate, with a center region and a plurality of protrusion regions connecting to the two sides of the center region; a plurality of word-lines, disconnected from each other, each crossing the corresponding protrusion region; a plurality of channel regions, formed where the protrusion region overlaps with the word-lines; a plurality of source regions, formed at the outer areas of the channel regions; a sharing drain region, formed at the center region of the active region; a bit-line contact, formed on surface of the sharing drain region; a bit-line, crossing the center region and electrically connected to the sharing drain region via the bit-line contact; a plurality of capacitors, electrically connected to the source regions; and a plurality of metal lines, electrically connected to the corresponding word-lines.
Abstract:
A process for forming an in-plane switching mode liquid crystal display (IPS-LCD), which defines pixel portions of the common and data electrodes by the same photo-masking and lithography procedure, is disclosed. Accordingly, the misalignment can be avoid. An in-plane switching mode liquid crystal display (IPS-LCD) is also disclosed. The IPS-LCD includes a storage capacitor consisting of storage-capacitor portions of the common and data electrode structures, which is disposed outside the pixel region so as to enhance the aperture ratio of the pixel region.
Abstract:
A method of fabricating cup shape cylindrical capacitor of high density Dynamic Random Access Memory (DRAM) cells is disclosed. The cup shape capacitor shape is achieved by first depositing a first polysilicon layer on a silicon substrate; a third dielectric layer is then formed overlaying the first polysilicon layer, and defined third dielectric crowns by the conventional lithography and etching techniques; a second polysilicon layer is deposited overlaying the third dielectric crowns and first polysilicon layer; the first polysilicon and second polysilicon layers are then vertically anisotropically etchback to define storage nodes of the cylindrical capacitors; the third dielectric crowns are removed; finally, the capacitor dielectric layer and the polysilicon top plate of the capacitor are formed to complete the cup shape cylindrical capacitor formation for high density DRAM applications.
Abstract:
A simplified tri-layer process for forming a thin film transistor matrix for a liquid crystal display is disclosed. By using a backside exposure technique, the masking step for patterning an etch stopper layer can be omitted. After forming an active region including a gate electrode and a scan line on the front side of a substrate, and sequentially applying an etch stopper layer and a photoresist layer over the resulting structure, the backside exposure is performed by exposing from the back side of the substrate. A portion of photoresist is shielded by the active region from exposure so that an etch stopper structure having a shape similar to the shape of the active region is formed without any photo-masking and lithographic procedure. Therefore, the above self-aligned effect allows one masking step to be reduced so as to simplify the process.
Abstract:
A method for fabricating a capacitor electrode on a semiconductor substrate includes the steps of: forming a conducting layer over the semiconductor substrate; forming a photoresist layer over the conducting layer; pattering the photoresist layer through an interfering exposure step; and pattering the conducting layer using the patterned photoresist layer as a mask, thereby forming a capacitor electrode.
Abstract:
A method of fabricating a rugged capacitor structure of high density Dynamic Random Access Memory (DRAM) cells is disclosed. First, MOSFETs, wordlines and bitlines are formed on a semiconductor silicon substrate. Next, a dielectric layer and a doped polysilicon layer are sequentially deposited over the entire silicon substrate. The dielectric layer and doped polysilicon layer are then partially etched to open source contact windows. Then, a polysilicon layer is deposited overlaying the doped polysilicon layer and filling into the source contact windows. Next, the polysilicon layer and doped polysilicon layers are partially etched to define bottom electrodes of the capacitors. Next, tilt angle implantation is performed to implant impurities into top surface and four sidewalls of the polysilicon layer and doped polysilicon layer. Next, a rugged polysilicon layer is deposited overlaying the polysilicon, doped polysilicon and third dielectric layers. Next, the polysilicon layer is anisotropically etched by using the rugged polysilicon layer as an etching mask to transfer rugged surface profile from the rugged polysilicon layer to the polysilicon layer. Finally, an interelectrode dielectric layer and a third polysilicon layer as top electrodes of the capacitors are sequentially formed to complete the rugged capacitor for high density DRAM applications.
Abstract:
A simplified tri-layer process for forming a thin film transistor matrix for a liquid crystal display is disclosed. By forming a pixel electrode layer before a gate metal layer, a remaining portion of the gate metal layer surrounding the pixel electrode can function as a black matrix after properly patterning and etching the gate metal layer. The in-situ black matrix exempts from an additional step of providing a black matrix and solves the problem in alignment.