摘要:
A circuit includes a phase detection circuit and a phase change circuit. The phase detection circuit compares a phase of a first periodic signal to an input signal to generate a gain signal. The phase change circuit provides phase shifts to the first periodic signal in first and second directions when the gain signal has a first value. The phase change circuit increases phase shifts provided to the first periodic signal in the first direction in response to the gain signal changing from the first value to a second value. The phase change circuit provides phase shifts to the first periodic signal in the second direction when the gain signal has the second value that are smaller than the phase shifts provided to the first periodic signal in the first direction when the gain signal has the second value.
摘要:
An integrated circuit (“IC”) may include clock and data recovery (“CDR”) circuitry for recovering data information from an input serial data signal. The CDR circuitry may include a reference clock loop and a data loop. A retimed (recovered) data signal output by the CDR circuitry is monitored by other control circuitry on the IC for a communication change request contained in that signal. Responsive to such a request, the control circuitry can change an operating parameter of the CDR circuitry (e.g., a frequency division factor used in either of the above-mentioned loops).
摘要:
System, methods, and devices for determining an eye diagram of a serial input signal to an integrated circuit without an oscilloscope are provided. For example, one embodiment of an integrated circuit device may be capable of determining an eye diagram associated with a serial input signal either during or after equalization. The device may include an equalizer and eye viewer circuitry configured to select a node of the equalizer for eye monitoring of the input signal, which may be during or after equalization. In one embodiment, the eye viewer circuitry may provide a separate sampler for each respective node, while sharing a control logic and phase interpolator among the samplers. The eye viewer circuitry may determine horizontal and vertical boundaries of the eye diagram associated with the serial input signal, as seen from the selected node of the equalizer.
摘要:
A link simulation tool for simulating high-speed communications link systems is provided. Communications links may include link subsystems such as transmit (TX) circuitry, receive (TX) circuitry, oscillator circuits that provide reference clock signals to the TX and RX circuitry, and channels that link the TX and RX circuitry. The link simulation tool may model each of the subsystems using behavioral models. The behavioral models may include characteristic functions such as transfer functions, probability density functions, and eye characteristics. The link simulation tool may have a link analysis engine that is capable of performing two-dimensional (two-variable) convolution operations and in applying dual-domain (frequency-time) transformations on the characteristic functions provided by the behavioral models to simulate the performance of the link system. The link simulation tool may have an input screen that allows a user to specify desired link parameters and a data display screen that display simulated results.
摘要:
One embodiment relates to a fracture-able PLL circuit. The fracture-able PLL circuit includes a first phase-locked loop circuit generating a first frequency output, a second phase-locked loop circuit; arranged to generate a second frequency output, and a plurality of shared output resources. Reconfigurable circuitry is arranged so that either of the first and second frequency outputs is receivable by each of the plurality of shared output resources. Another embodiment relates to an integrated circuit which includes a plurality of PMA modules, a plurality of multiple-purpose PLL circuits, and a programmable clock network. The programmable clock network is arranged to allow the clock signals output by the multiple-purpose PLL circuits to be selectively used either by the PMA modules for a transceiver application or by other circuitry for a non-transceiver application. Other embodiments and features are also disclosed.
摘要:
An integrated circuit (“IC”) includes circuitry for use in testing a serial data signal. One such IC includes circuitry for transmitting the serial data signal with optional jitter, optional noise, and/or controllably variable drive strength. One such IC also includes circuitry for receiving the serial data signal and performing a bit error rate (“BER”) analysis in such a signal. Such an IC provides output signals indicative of results of its operations. One such IC operates in various modes to perform or at least emulate functions of an oscilloscope, a bit error rate tester, etc., for testing signals and circuitry with respect to jitter-tolerance, noise-tolerance, etc.
摘要:
A transmitter circuit is operable to provide an output signal in response to a first periodic signal. A multiplexer circuit is operable to provide a second periodic signal as a selected signal during a first phase of operation. The multiplexer circuit is operable to provide the output signal of the transmitter circuit as the selected signal during a second phase of operation. A sampler circuit is operable to generate first samples of the selected signal during the first phase of operation. The sampler circuit is operable to generate second samples of the selected signal during the second phase of operation. A duty cycle control circuit is operable to adjust a duty cycle of the first periodic signal based on the first and the second samples.
摘要:
Signal detection circuitry for a serial interface oversamples the input—i.e., samples the input multiple times per clock cycle—so that the likelihood of missing a signal is reduced. Sampling may be done with a regenerative latch which has a large bandwidth and can latch a signal at high speed. The amplitude threshold for detection may be programmable, particularly in a programmable device. Thus, between the use of a regenerative latch which is likely to catch any signal that might be present, and the use of oversampling to avoid the problem of sampling at the wrong time, the likelihood of failing to detect a signal is greatly diminished. Logic, such as a state machine, may be used to determine whether the samples captured s do or do not represent a signal. That logic may be programmable, allowing a user to set various parameters for signal detection.
摘要:
An IC that includes an eye viewer and a BER checker coupled to the eye viewer, where the BER checker receives a serial data signal from the eye viewer, is provided. In one implementation, the BER checker receives the serial data signal from the eye viewer without the serial data signal passing through a deserializer. In one implementation, the BER checker compares the serial data signal against a reference data signal to determine the BER for the serial data signal. In one implementation, the IC includes an IC core coupled to the eye viewer and the BER checker, where the BER checker is outside the IC core. In one implementation, the BER checker is a dedicated BER checker. In one implementation, the BER checker includes an exclusive OR gate, a programmable delay circuit coupled to the exclusive OR gate, and an error counter coupled to the exclusive OR gate.
摘要:
An integrated circuit (“IC”) may include circuitry for use in testing a serial data signal. The IC may include circuitry for transmitting the serial data signal with optional jitter, optional noise, and/or controllably variable drive strength. The IC may also include circuitry for receiving the serial data signal and performing a bit error rate (“BER”) analysis in such a signal. The IC may provide output signals indicative of results of its operations. The IC can operate in various modes to perform or at least emulate functions of an oscilloscope, a bit error rate tester, etc., for testing signals and circuitry with respect to jitter-tolerance, noise-tolerance, etc.