Abstract:
A resonant pressure sensor with improved linearity includes: a substrate including a substrate-separated portion separated from a housing-fixed portion; a first resonator that: is disposed in the substrate-separated portion; and detects a change of a first resonance frequency based on a strain in the substrate caused by static pressure applied by a pressure-receiving fluid; a second resonator that: is disposed in the substrate; detects a change of a second resonance frequency based on the strain in the substrate; and has a pressure sensitivity of the second resonance frequency; and a processor that: measures the static pressure based on the detected change of the first resonance frequency; and corrects the static pressure according to internal temperature of the pressure sensor based on a difference between the second resonance frequency and the first resonance frequency.
Abstract:
An resonant pressure sensor, includes: a housing; a housing-fixed portion that is fixed to the housing; a substrate that includes a substrate-fixed portion that is fixed to the housing-fixed portion and a substrate-separated portion that is separated from the housing-fixed portion and extends from the substrate-fixed portion; a first resonator that is disposed in the substrate-separated portion and that detects a change of a resonance frequency based on a strain in the substrate caused by static pressure applied by the pressure-receiving fluid; and a processor. A pressure-receiving fluid is interposed in a gap between the housing-fixed portion and the substrate and envelops the substrate. The processor measures the static pressure based on the detected change of the resonance frequency.
Abstract:
A building integrity assessment system includes: an earthquake detector including: a building bottom sensor at a bottom of a building and that detects acceleration and an earthquake early-warning receiver that receives an earthquake early warning; a cloud computer; and sensors disposed at a plurality of positions in the building and that measures an influence of an earthquake on the building at each of the positions and wirelessly transmits measurement results to the cloud computer. The cloud computer estimates and evaluates the integrity of the building based on the measurement results. In response to the building bottom sensor detecting preliminary tremors or the earthquake early-warning receiver receiving the earthquake early warning, the plurality of sensors measures the influence of the earthquake on the building from a time before a major motion arrives at the building to a time after the arrival.
Abstract:
A resonant pressure sensor includes a first substrate and a resonator. The first substrate includes a diaphragm and a projection disposed on the diaphragm. The resonator is disposed in the first substrate, a part of the resonator being included in the projection, and the resonator being disposed between a top of the projection and an intermediate level of the first substrate. The first substrate is an SOI substrate in which a silicon dioxide layer is inserted between a silicon substrate and a superficial silicon layer. The intermediate level of the first substrate is disposed in the silicon substrate, and the resonator is disposed in the projection included in the superficial silicon layer.
Abstract:
A resonant pressure sensor includes a first substrate including a diaphragm and at least one projection disposed on the diaphragm, and at least one resonator disposed in the first substrate, at least a part of the resonator being included in the projection, and the resonator being disposed between a top of the projection and an intermediate level of the first substrate.
Abstract:
A resonant sensor includes a mover that is movable in a first direction, a supporter that extends in a second direction perpendicular to the first direction, the supporter being connected to the mover and a fixer, the supporter supporting the mover which is movable in the first direction, and a resonator that is vibratable, at least a part of the resonator being embedded in the supporter.
Abstract:
A resonant transducer includes a resonator, a resonator electrodes connected to an end part of the resonator, at least one fixed electrode arranged in the vicinity of the resonator, and a buried part formed between the fixed electrode and the resonator electrode. The resonator, the resonator electrodes and the fixed electrode are formed by the same active layer on a substrate.
Abstract:
A sensor includes a first structure that is attachable to a measurement specimen, a second structure that is made of material which is smaller in thermal expansion coefficient than the first structure, a bottom surface of the second structure being connected to the first structure, and a detector that is connected to an upper surface of the second structure, the detector being configured to detect a deformation of the second structure.
Abstract:
A resonant pressure sensor with improved linearity includes: a substrate including a substrate-separated portion separated from a housing-fixed portion; a first resonator that: is disposed in the substrate-separated portion; and detects a change of a first resonance frequency based on a strain in the substrate caused by static pressure applied by a pressure-receiving fluid; a second resonator that: is disposed in the substrate; detects a change of a second resonance frequency based on the strain in the substrate; and has a pressure sensitivity of the second resonance frequency; and a processor that: measures the static pressure based on the detected change of the first resonance frequency; and corrects the static pressure according to internal temperature of the pressure sensor based on a difference between the second resonance frequency and the first resonance frequency.
Abstract:
A resonant transducer includes a silicon single crystal substrate, a silicon single crystal resonator disposed over the silicon single crystal substrate, a shell made of silicon, surrounding the resonator with a gap, and forming a chamber together with the silicon single crystal substrate, an exciting module configured to excite the resonator, a vibration detecting module configured to detect vibration of the resonator, a first layer disposed over the chamber, the first layer having a through-hole, a second layer disposed over the first layer, a third layer covering the first layer and the second layer, and a projection extending from the second layer toward the resonator, the projection being spatially separated from the resonator, the projection being separated from the first layer by a first gap, the second layer being separated from the first layer by a second gap, the first gap is communicated with the second gap.