摘要:
Delay associated with each of two signals along respective transmission paths is accurately measured using a delay measurement circuit that is fabricated in situ on the actual device where the circuitry for propagating the two signals is fabricated. Thus, the measured delay associated with each of the two signals is subject to the same fabrication-dependent attributes that affect the actual circuitry through which the two signals will be propagated during operation of the device. The skew between the two signals is quantified as the difference in the measured delays. Coarse and fine delay modules are defined within the transmission path of each of the two signals. Based on the measured skew between the two signals, the coarse and fine delay modules are appropriately set to compensate for the skew. The appropriately settings for the coarse and fine delay modules can be stored in non-volatile memory elements.
摘要:
Delay associated with each of two signals along respective transmission paths is accurately measured using a delay measurement circuit that is fabricated in situ on the actual device where the circuitry for propagating the two signals is fabricated. Thus, the measured delay associated with each of the two signals is subject to the same fabrication-dependent attributes that affect the actual circuitry through which the two signals will be propagated during operation of the device. The skew between the two signals is quantified as the difference in the measured delays. Coarse and fine delay modules are defined within the transmission path of each of the two signals. Based on the measured skew between the two signals, the coarse and fine delay modules are appropriately set to compensate for the skew. The appropriately settings for the coarse and fine delay modules can be stored in non-volatile memory elements.
摘要:
Delay associated with each of two signals along respective transmission paths is accurately measured using a delay measurement circuit that is fabricated in situ on the actual device where the circuitry for propagating the two signals is fabricated. Thus, the measured delay associated with each of the two signals is subject to the same fabrication-dependent attributes that affect the actual circuitry through which the two signals will be propagated during operation of the device. The skew between the two signals is quantified as the difference in the measured delays. Coarse and fine delay modules are defined within the transmission path of each of the two signals. Based on the measured skew between the two signals, the coarse and fine delay modules are appropriately set to compensate for the skew. The appropriately settings for the coarse and fine delay modules can be stored in non-volatile memory elements.
摘要:
Delay associated with each of two signals along respective transmission paths is accurately measured using a delay measurement circuit that is fabricated in situ on the actual device where the circuitry for propagating the two signals is fabricated. Thus, the measured delay associated with each of the two signals is subject to the same fabrication-dependent attributes that affect the actual circuitry through which the two signals will be propagated during operation of the device. The skew between the two signals is quantified as the difference in the measured delays. Coarse and fine delay modules are defined within the transmission path of each of the two signals. Based on the measured skew between the two signals, the coarse and fine delay modules are appropriately set to compensate for the skew. The appropriately settings for the coarse and fine delay modules can be stored in non-volatile memory elements.
摘要:
A programmable memory interface circuit includes a programmable DLL delay chain, a phase offset control circuit and a programmable DQS delay chain. The DLL delay chain uses a set of serially connected delay cells, a programmable switch, a phase detector and a digital counter to generate a coarse phase shift control setting. The coarse phase shift control setting is then used to pre-compute a static residual phase shift control setting or generate a dynamic residual phase shift control setting, one of which is chosen by the phase offset control circuit to be added to or subtracted from the coarse phase shift control setting to generate a fine phase shift control setting. The coarse and fine phase shift control settings work in concert to generate a phase-delayed DQS signal that is center-aligned to its associated DQ signals.
摘要:
A circuit includes a locked loop and a phase offset circuit. The locked loop generates first control signals for controlling a first delay in the locked loop. The phase offset circuit delays an input signal by a second delay that is controlled by second control signals to generate a delayed signal. The phase offset circuit generates the second control signals by adjusting the first control signals to increase the accuracy of the delayed signal with respect to a target phase. The second control signals compensate for at least a portion of a change in the second delay that is caused by a variation in at least one of a process, a supply voltage, and a temperature of the circuit.
摘要:
A feedback loop circuit includes a phase detector and delay circuits. The phase detector generates an output signal based on a delayed periodic signal. The delay circuits are coupled in a delay chain that delays the delayed periodic signal. Each of the delay circuits comprises variable delay blocks and fixed delay blocks that are coupled to form at least two delay paths for an input signal through the delay circuit to generate a delayed output signal. Delays of the variable delay blocks in the delay circuits vary based on the output signal of the phase detector. Each of the delay circuits reroutes the input signal through a different one of the delay paths to generate the delayed output signal based on the output signal of the phase detector during operation of the feedback loop circuit. Each of the variable delay blocks and the fixed delay blocks is inverting.
摘要:
Circuits and a method for correcting duty cycle distortions in an integrated circuit (IC) are disclosed. The IC includes a splitter circuit that is coupled to receive a clock signal. The clock signal is split into two different clock signals. One of the clock signals is an inverted version of the other. A delay circuit is coupled to each of the clock signals. Each of the delay circuits generates a delayed version of the corresponding clock signal. A corrector circuit is coupled to receive both the delayed versions of the clock signals. The corrector circuit generates a clock output signal with a corrected duty cycle.
摘要:
An input buffer circuit has a plurality of selectively enabled differential amplifier circuits, where each differential amplifier is configured for compatibility with a particular differential I/O standard and its corresponding input operating range. For example, the input buffer may have two differential amplifiers suitable for receiving LVDS differential input signals over a wide input operating range, and another differential amplifier suitable for receiving the PCML differential input signals. One or more control signals are provided to the input buffer, e.g., programmably, to selectively enable the required differential amplifier(s) for a given I/O standard.
摘要:
An input buffer circuit has a plurality of selectively enabled differential amplifier circuits, where each differential amplifier is configured for compatibility with a particular differential I/O standard and its corresponding input operating range. For example, the input buffer may have two differential amplifiers suitable for receiving LVDS differential input signals over a wide input operating range, and another differential amplifier suitable for receiving the PCML differential input signals. One or more control signals are provided to the input buffer, e.g., programmably, to selectively enable the required differential amplifier(s) for a given I/O standard.