摘要:
A hybrid integrated circuit having a lead frame electrically connected to electronic components by means of a silver (Ag) paste, the hybrid integrated circuit comprising: an electroless-plated coating on the lead frame, the coating being free from an insulating surface oxide layer at least in a connection area in which the electrical connection is provided. A process of producing this hybrid integrated circuit comprises: a first step of electroless-plating a lead frame by using a phosphorus-containing reducing agent to form a coating on the lead frame; a second step of mounting electronic components on the lead frame and then electrically and mechanically connecting the former to the latter by means of an electroconductive paste; and a third step of maintaining the surface of the electroless-plated coating free from a phosphorus-containing oxide layer during the connecting operation.
摘要:
A method of manufacturing a magneto-electric conversion device having a large rate of change of magnetic resistance and which is easy to position with respect to a magnetized surface, and a moving subject displacement detector using a magneto-electric conversion device manufactured by that method. A magnet which rotates together with the rotation of a drive gear is magnetized in alternately differing north and south poles, arranged in an equal sized section from a center portion thereof. An IC chip is positioned opposite to and at a distance from the magnetized surface of the magnet. Magneto-electric conversion devices are located on the IC chip. These magneto-electric conversion devices are formed by repeated alternate depositions, onto a surface of a single-crystal silicon substrate, of magnetic cobalt films having a thickness of several to several tens of angstroms and non-magnetic copper films having a thickness of several to several tens of angstroms.
摘要:
This invention relates to a magnetoresistive element used for a magnetic sensor, etc. A ferromagnetic magnetoresistive element thin film is formed so as to be electrically connected to and so as to overlap the upper end portion of an aluminum wiring metal on a substrate. Through using a vacuum heat treatment with a temperature between 350.degree. and 450.degree. C., a Ni--Al-based alloy is formed at the overlapping portion. Therefore, even when a surface protection film of silicon nitride is subsequently formed by plasma CVD on the substrate, the alloy prevents the nitriding of the upper end portion of the aluminum wiring metal. Accordingly, the surface can be protected from moisture by the silicon nitride film without increasing the contact resistance between the magnetoresistive element thin film and the wiring metal. Instead of the Ni--Al-based alloy, other conductive metals such as TiW, TiN, Ti, Zr, or the like may be used. Also, the surface protection film may be a multi-layered film having a first film containing no nitrogen, such as a silicon oxide film, and a second film of silicon nitride film formed on the first film.
摘要:
It is an object to provide a method of fabrication for a semiconductor acceleration sensor which can prevent destruction of a movable portion during dicing. A sacrificial layer composed of silicon oxide film is formed on a silicon substrate, and a movable member composed of polycrystalline silicon is formed on the sacrificial layer. A polyimide film is applied on the movable member at room temperature and heated to approximately 350.degree. C. to harden. The movable member is supported by this polyimide film. Accordingly, etching liquid penetration holes are formed on the polyimide film. Further, the sacrificial layer disposed between the movable member and the silicon substrate is etched away by means of dipping the silicon substrate into hydrofluoric acid-based etching liquid. Thereafter, the silicon substrate is dipped into demineralized water to replace the etching liquid with demineralized water, and subsequently the silicon substrate is dried. Accordingly, the silicon substrate is diced and thereafter the polyimide film is etched away by O.sub.2 ashing.
摘要:
A magnetic sensor apparatus includes a semiconductor substrate and a magnetic impedance device for detecting a magnetic field. The magnetic impedance device is disposed on the substrate. The magnetic sensor apparatus has minimum size and is made with low manufacturing cost. Here, the magnetic impedance device detects a magnetic field in such a manner that impedance of the device is changed in accordance with the magnetic filed when an alternating current is applied to the device and the impedance is measured by an external electric circuit.
摘要:
A magnetic sensor apparatus includes a semiconductor substrate and a magnetic impedance device for detecting a magnetic field. The magnetic impedance device is disposed on the substrate. The magnetic sensor apparatus has minimum size and is made with low manufacturing cost. Here, the magnetic impedance device detects a magnetic field in such a manner that impedance of the device is changed in accordance with the magnetic filed when an alternating current is applied to the device and the impedance is measured by an external electric circuit.
摘要:
A magnetic sensor apparatus includes a semiconductor substrate and a magnetic impedance device for detecting a magnetic field. The magnetic impedance device is disposed on the substrate. The magnetic sensor apparatus has minimum size and is made with low manufacturing cost. Here, the magnetic impedance device detects a magnetic field in such a manner that impedance of the device is changed in accordance with the magnetic filed when an alternating current is applied to the device and the impedance is measured by an external electric circuit.
摘要:
A magnetic sensor apparatus includes a semiconductor substrate and a magnetic impedance device for detecting a magnetic field. The magnetic impedance device is disposed on the substrate. The magnetic sensor apparatus has minimum size and is made with low manufacturing cost. Here, the magnetic impedance device detects a magnetic field in such a manner that impedance of the device is changed in accordance with the magnetic filed when an alternating current is applied to the device and the impedance is measured by an external electric circuit.
摘要:
On a back face of a silicon wafer before dicing, tapered grooves having sloped side walls are formed by anisotropic etching along with thin portions. Strain gauges are formed on each thin portion, thereby forming a sensor chip on the silicon wafer. The back face of the silicon wafer is attached to a self-adhesive seat. Thereafter, the silicon wafer is cut along the grooves by a dicing blade to divide it into each sensor chip. In dicing, the side faces of the dicing blade cut the sloped side walls of the tapered grooves. As a result, the silicon wafer is diced into individual sensor chip having no cracks and chippings.
摘要:
An acceleration sensor is constructed by a substrate, a cylindrical dead-weight movable electrode to be displaced by acceleration, a fixed electrode from the inside of which a cylinder is hollowed, a cylindrical anchor arranged on the substrate for supporting the dead-weight movable electrode with elastic transformable structural material and beams. When acceleration is applied from the outside, the cylindrical detecting face of the dead-weight movable electrode and the cylindrical detected face of the fixed electrode are in contact on a two-dimensional plane parallel to the substrate and the acceleration sensor detects the contact. A radial interval between the detecting face of the dead-weight movable electrode and the detected face of the fixed electrode is set in view of the elastic modulus of the beams so that external force can be detected isotropically and the acceleration sensor detects acceleration on a two-dimensional plane nondirectionally.