摘要:
Nonflammable foam blowing agent blends of 142b or 124 are provided, as are polyol premixes and polyurethane foam compositions containing such blends.
摘要:
Preparation of cis/trans 1234ze monomer is provided, by dehydrofluorination of 245fa using an alkaline solution or using a gas phase catalyzed process.
摘要:
Nonflammable foam blowing agent blends of 142b or 124 are provided, as are polyol premixes and polyurethane foam compositions containing such blends.
摘要:
An azeotrope containing HF and 1233zd is provided, as are methods for separating this azeotrope from mixtures of HF and 1233zd which are HF-rich or 1233zd-rich and methods for making use of the azeotrope and separation methods to improve processes for preparing 1233zd, an intermediate used in the preparation of 245fa. 245fa is a known foam blowing agent and refrigerant.
摘要:
The invention comprises a curable composition comprising: (i) a blocked reactive component wherein the blocked reactive component is a blocked isocyanate or a blocked isothiocyanate; (ii) a functional compound reactive with the blocked reactive component, the functional compound containing reactive hydrogen; (iii) a catalyst for promoting the reaction of the reactive component with the blocked functional compound, wherein said catalyst is based on the reaction product of manganese, cobalt, nickel, copper, zinc, germanium, antimony, or bismuth, or the oxides thereof with a mercaptan, or an organic acid, wherein said organic acid is hexanoic, oxalic, adipic, lactic, tartaric, salicylic, thioglycolic, succinic, or mercapto succinic acid, or the reaction product of copper or germanium, or the oxides thereof with a lower aliphatic acid. The manganese, cobalt, nickel, copper, zinc, germanium, antimony, or bismuth catalysts can be used in conjunction with other compounds to promote the reaction, especially compounds based on tin, preferably organotin compounds. Water soluble catalysts are preferred. The coating composition can be electrocoated on a conductive substrate and cured.
摘要:
A crosslinkable composition of a polymeric thermoplastic and/or elastomeric material which is susceptible to scorching when processed at elevated temperatures, prior to crosslinking, in the presence of a free radical initiator, is protected against such scorching by the incorporation therein of a mixture of at least one hydroquinone compound and a sulfur accelerator. This mixture may also contain at least one monomeric allylic, methacrylic, acrylic or diene type coagent. The mixture exhibits a synergistic effect resulting in improved scorch protection for peroxide cured systems when compared with the protection afforded by the components singly.
摘要:
The inventors disclose a process for producing semi-bright to bright electrogalvanic coatings at high current densities, comprising electroplating a cathodic conductive substrate in a coating bath based on:a) a zinc sulfur-acid salt; b) a low molecular weight polyoxyalkylene glycol based on 2 to about 4 carbon atom alkylene oxides; c) an aromatic sulfonate; and d) a conductivity enhancing salt. The process includes maintaining the coating composition at a pH from about 2 to about 5 and the current density on the substrate at from about 1,000 to about 3,700 ASF. The zinc sulfur-acid salt includes zinc sulfate or a zinc organosulfonate, and the conductivity enhancing salt, a potassium salt. In one embodiment, the aromatic sulfonate comprises a condensation product of an aromatic sulfonate and formaldehyde. The inventors also describes coating bath compositions.
摘要:
Active Rhodium catalyst and impurities are separated from a hydroformylation process stream containing both active and inactive organo-rhodium catalyst by binding active catalyst and impurities to an acidic ion exchange resin containing an acidic group. The purified hydroformylation stream can be returned to the hydroformylation reactor. All or a portion of inactive rhodium can be reactivated before recycling purified hydroformylation process stream to the reactor. During regeneration of the resin, a neutral solvent is used first to remove impurities which are discarded, then an acidic solvent is used to remove active organic rhodium catalyst from the resin. Such active catalyst can be rehydrided and returned to the hydroformylation reactor. An ion exchange resin having at least one acid group disposed on a silica backbone and an active organo-rhodium complex from a hydroformylation process stream bound to the resin can be produced.