摘要:
Even when the flow rate at which liquid is supplied varies, the variation in the resistivity of resistivity-adjusted liquid is suppressed by using a simple structure. The hollow fiber membrane module is sectioned into a liquid-phase region and a gas-phase region by hollow fiber membranes. The liquid-phase region receives liquid L whose resistivity is to be adjusted. The gas-phase region receives adjustment gas G used to adjust a resistivity of the liquid L. The module passage pipe communicates with the liquid-phase region of the hollow fiber membrane module, the liquid supply pipe, and the liquid discharge pipe and passes through the hollow fiber membrane module. The bypass pipe communicates with the liquid supply pipe and the liquid discharge pipe and bypasses the hollow fiber membrane module. The bypass pipe includes a laminarization unit including a plurality of thin tubes thinner than the module passage pipe.
摘要:
In an embodiment, a reactor for carrying out a melt transesterification reaction at a reactor temperature of 160 to 300° C. and a reactor pressure of 5 to 200 mbar, comprises a cylindrical tank comprising a top, a side, and a bottom, wherein the bottom is convex, extending away from the top; a stirring shaft disposed within the cylindrical tank along an axis thereof so that it is rotatable from outside of the cylindrical tank; an impeller extending from the stirring shaft in the cylindrical tank and comprising a plurality of blades; a reactant solution inlet; a reaction solution outlet; and an externally located heat exchanger in fluid communication with the cylindrical tank via a recirculation stream and a heated stream. The reactor can be used for the polymerization of a polycarbonate oligomer.
摘要:
The present invention generally relates to emulsions, and more particularly, to multiple emulsions. In one aspect, multiple emulsions are formed by urging a fluid into a channel, e.g., by causing the fluid to enter the channel as a “jet.” Side channels can be used to encapsulate the fluid with a surrounding fluid. In some cases, multiple fluids may flow through a channel collinearly before multiple emulsion droplets are formed. The fluidic channels may also, in certain embodiments, include varying degrees of hydrophilicity or hydrophobicity. As examples, the fluidic channel may be relatively hydrophilic upstream of an intersection (or other region within the channel) and relatively hydrophobic downstream of the intersection, or vice versa. In some cases, the average cross-sectional dimension may change, e.g., at an intersection. For instance, the average cross-sectional dimension may increase at the intersection. Surprisingly, a relatively small increase in dimension, in combination with a change in hydrophilicity of the fluidic channel, may delay droplet formation of a stream of collinearly-flowing multiple fluids under certain flow conditions; accordingly, the point at which multiple emulsion droplets are formed can be readily controlled within the fluidic channel. In some cases, the multiple droplet may be formed from the collinear flow of fluids at (or near) a single location within the fluidic channel. In addition, unexpectedly, systems such as those described herein may be used to encapsulate fluids in single or multiple emulsions that are difficult or impossible to encapsulate using other techniques, such as fluids with low surface tension, viscous fluids, or viscoelastic fluids. Other aspects of the invention are generally directed to methods of making and using such systems, kits involving such systems, emulsions created using such systems, or the like.
摘要:
A fluid path set includes a first fluid line having a proximal end fluidly connectable to a source of a first fluid and a second fluid line having a proximal end fluidly connectable to a source of a second fluid. A flow mixing device is in fluid communication with distal ends of the first and second fluid lines. The flow mixing device includes a housing, a first fluid port provided for receiving the first fluid, and a second fluid port for receiving the second fluid. A mixing chamber is disposed within the housing and is in fluid communication with the first and second fluid ports. A third fluid port in fluid communication with the mixing chamber for discharging a mixed solution of the first and second fluids. A turbulent flow inducing member is disposed within the mixing chamber for promoting turbulent mixing of the first and second fluids.
摘要:
Described is a mixing device and method for mixing fluids. Fluids to be mixed are introduced into a near-critical or a supercritical fluid carrier fluid. A density gradient is generated in the carrier fluid upon introduction of a fluid to be mixed that induces a convective velocity that provides for rapid mixing. The invention has application in such commercial applications as semiconductor and wafer fabrication where rapid cycle times or rapid mixing of fluids is required and where low tolerances for residues are permitted.
摘要:
A device for producing nanoparticles includes: a first connector comprising a first supply tube fitting member, a second supply tube fitting member, and a first discharge tube fitting member; a first tube having one side connected to the first supply tube fitting member; a second tube having one side connected to the second supply tube fitting member; a first conduit having one side connected to the first discharge tube fitting member; a first supply connected to another side of the first tube to supply a first material to the first conduit; and a second supply connected to another side of the second tube to supply a second material to the first conduit.
摘要:
A machine and process for providing a gas liquid mixture are described. The process can include providing a pressurized fluid stream; and subjecting the fluid stream to a series of alternating flow regions that include a plurality of laminar flow regions and turbulent flow regions. The machine can include a flow path from a pressure vessel to an ejection point, where the flow path includes a plurality of alternating flow characteristic regions.
摘要:
Embodiments of the present disclosure include a process and a system for solubilizing a surfactant in supercritical carbon dioxide that include providing a turbulent flow of the supercritical carbon dioxide into which the surfactant solubilizes and injecting the surfactant into the turbulent flow of the supercritical carbon dioxide to achieve a Jet Mixing Number of 0.01 to 1.0. In one or more embodiments, a pump provides turbulent flow to supercritical carbon dioxide moving through at least a portion of piping, and an injector associated with the piping conveys the surfactant through surfaces defining a port in the injector to inject the surfactant into the turbulent flow of the supercritical carbon dioxide so as to achieve the Jet Mixing Number of 0.01 to 1.0.
摘要:
Uses of a method of producing small bubbles of gas in a liquid include gas transfer in airlift bioreactors and anaerobic digesters, and particle separation. The method uses a source of the gas under pressure, a conduit opening into a liquid and oscillating the gas passing along the conduit. The oscillation is effected by fluidic oscillator, comprising a diverter that divides the supply into respect outputs, each output being controlled by a control port, wherein the control ports are interconnected by a closed loop. Separation of algae from water involves delivering a laminar flow of microbubbles in the range 10 to 100 μm diameter. Such bubbles also deliver a laminar flow in bioreactors that delivers enhanced liquid flow despite the small bubbles, which improves mixing and also enhances efficiency of gas exchange and retention of the bubbles in the reactor.
摘要:
The present invention provides methods and apparatus for mixing samples in-line in a microfluidic system, comprising methods of and means for introducing a first fluid sample into a flow-tube at a first end at a first velocity via a first conduit; methods of and means for introducing a second fluid sample into the flow-tube at the first end at a second velocity, the second velocity different from the first velocity, via a second conduit, wherein the first fluid sample and the second fluid sample converge in the flow tube to form an interface; whereby the first fluid sample and the second fluid sample mix at the interface within the flow-tube, wherein fluid flow at the first end of the flow-tube is laminar and fluid flow at a second end of the flow-tube is laminar, and wherein the flow-tube has a constant diameter between the first end and the second end of the flow-tube.