Abstract:
A heat-insulating housing (21) includes: a wall body; and an open-cell resin body (4) of thermosetting resin with which a heat-insulating space formed by the wall body is filled by integral foaming, the open-cell resin body including: a plurality of cells (47); a cell film portion (42); a cell skeleton portion (43); a first through-hole (44) formed so as to extend through the cell film portion; and a second through-hole (45) formed so as to extend through the cell skeleton portion, wherein the plurality of cells communicate with one another through the first through-hole and the second through-hole.
Abstract:
A vacuum heat insulating body includes core material and outer packing material that vacuum-seals core material. Core material includes first heat insulating core material and second heat insulating core material having ventilation characteristics. Moreover, first heat insulating core material has ventilation resistance greater than the ventilation resistance of second heat insulating core material. First heat insulating core material is configured with an open-cell resin, and second heat insulating core material is configured with a fiber material or a powder material having ventilation resistance smaller than the ventilation resistance of the open-cell resin.
Abstract:
A heat-insulating housing (21) includes: a wall body; and an open-cell resin body (4) of thermosetting resin with which a heat-insulating space formed by the wall body is filled by integral foaming, the open-cell resin body including: a plurality of cells (47); a cell film portion (42); a cell skeleton portion (43); a first through-hole (44) formed so as to extend through the cell film portion; and a second through-hole (45) formed so as to extend through the cell skeleton portion, wherein the plurality of cells communicate with one another through the first through-hole and the second through-hole.
Abstract:
A refrigerator uses a vacuum heat insulation material. The refrigerator includes a door including a space part having a predetermined volume and a housing having a hole to allow communication between inner and outer sides of the space part. The space part includes, as a core material, an open cell polyurethane foam formed by a foam material injected via the hole to fill the space part.
Abstract:
A method of easily deforming a plate-shape vacuum insulation material and producing a smaller but highly effective insulation container, comprising steps of inserting a thermoplastic open-celled rigid foam as a core material into a packet composed of gas barrier film, evacuating and sealing the packet so as to produce a vacuum insulation material, heating and softening the vacuum insulation material so as to deform the same, and cooling the vacuum insulation material so as to cure the same, and also a freezing and refrigerating container having Peliter element.
Abstract:
A heat insulation box body includes inner and outer boxes forming a shell of the heat insulation box body and triangular structural materials inserted in the shell held by close-contact by means of a vacuum. Further, at the time of disassembling the heat insulation box body after scrapping, a shell surface is cut and air is introduced into the inside of the shell to return the state of the shell to an atmospheric pressure state and then respective members are separated from each other.
Abstract:
A chill box for shipping refrigerated goods formed of a plurality of insulating portions which are collapsible and have foiled surfaces and polyurethene foam inbetween. 45 degrees chamfers on each of the adjoining sides of each of the corners that are located between the panels of the portions to facilitate bending.
Abstract:
A ventilation unit for a freezer chamber, with a conduit and at least one heating element, wherein in the conduit, at least in sections, an air-permeable filler material is disposed, as well as a freezer chamber with such a ventilation unit as well as methods for operating such ventilation unit.
Abstract:
A robust, durable, easy to use, reusable shipping container is disclosed that is capable of protecting contents from surrounding high temperatures up to 1000 degrees Fahrenheit for a minimum of at least three and a half hours. The container includes an inner chamber surrounded by an outer chamber. A phase change liquid (PCL) is sequestered in a porous support matrix contained in the inner chamber, while the outer chamber is filled with high temperature insulation, forming an outer barrier layer that is designed to reduce heat flux into the inner chamber.
Abstract:
A method of routing utility lines in a vacuum insulated refrigerator structure includes forming a shell and an elongated umbilical comprising an elongated impervious sleeve and a core structure defining at least two elongated internal passageways extending lengthwise along the umbilical. The method includes sealingly connecting a first end of the sleeve to the shell at a first opening, and sealingly connecting a second end of the sleeve to the shell at a second opening. A vacuum is formed in an internal cavity of the shell. Utility lines are routed through at least one of the elongated internal passageways whereby portions of the utility lines are disposed inside the umbilical, and opposite ends of the utility lines extend out of the opposite ends of the umbilical.