Abstract:
A slash-protecting panel is affordable, comfortable, flexible, light, and concealable, while providing at least 80N HOSDB slash protection. A plurality of solid elements are aligned on upper and lower backing sheets in rows and columns separated by continuous gaps between 25% and 95% as wide as the solid elements, the upper elements being centered above the gap intersections of the lower elements, leaving isolated gap “islands” uncovered but no continuous gaps. Embodiments further include a third layer with smaller “button” solid elements arranged behind the gap islands, leaving no gaps. The solid elements can be ceramic or metal, and the backing sheets can be ballistic fabric, or any convenient woven, non-woven, or warp knit. Solid elements can be attached to the sheets by rivets or adhesives, or held in pockets. Embodiments include an inner and/or an outer covering layer of a knit or similar fabric for added comfort.
Abstract:
An MFA panel provides enhanced compressibility and off-axis threat protection by distributing solid elements among a plurality of vertically stacked, flexible supporting sheets, so that the elements on each sheet are spaced apart while the stacked arrangement provides adjacent or overlapping coverage of the panel, while allowing the solid elements to slide over each other during compression. The solid elements can be triangular or square, and can be metal or ceramic. The supporting sheets can be high tensile, such as para aramid, or low tensile, such as PET, Nylon, or cotton, for enhanced compressibility, flexibility, drape, and hand. A high tensile backing ply can be included to inhibit tensile failure of low tensile supporting sheets. In embodiments, the panels are attached to each other only at their edges. Fibers of para aramid supporting sheets can be unidirectional, so as to share the load of an impact throughout the panel.
Abstract:
A robust, durable, easy to use, reusable shipping container is disclosed that is capable of protecting contents from surrounding high temperatures up to 1000 degrees Fahrenheit for a minimum of at least three and a half hours. The container includes an inner chamber surrounded by an outer chamber. A phase change liquid (PCL) is sequestered in a porous support matrix contained in the inner chamber, while the outer chamber is filled with high temperature insulation, forming an outer barrier layer that is designed to reduce heat flux into the inner chamber.
Abstract:
A glove that has a high percentage of low stretch materials and a method for the designing thereof provides an accurate fit to the majority of hand anatomies without relying on material stretch. The method includes determining a hand length, selecting four critical dimensions from among bridge length, thumb length, index finger length, middle finger length, ring finger length, and pinky finger length, and calculating the four selected dimensions such that ratios of the selected dimensions divided by the hand length fall within corresponding ranges, where the corresponding ranges are from 0.46 to 0.49 for the bridge length, from 0.61 to 0.63 for the thumb length, from 0.37 to 0.40 for the index finger length, from 0.40 to 0.43 for the middle finger length, from 0.37 to 0.40 for the ring finger length, and from 0.30 to 0.33 for the pinky finger length.
Abstract:
A carrier garment configured to carry protective panels on a user's torso allows adjustment of the carrier garment and the protective panels to accommodate a wide range of bust and torso sizes, from flat-chested to full figured bust and torso lines. Embodiments allow quick adjustment back to a flat configuration to accommodate rifle protection plates that require the carrier and the underlying panels to be flat. Various embodiments can be locked to ensure that the garment retains its adjusted shape. A shaping point and/or a slit can be provided to assist in shaping stiff materials. Embodiments include a plurality of attachment points to which a lower end of an adjustment lanyard can be attached. A lining or inner layer can be included, and can be configured to adjust in shape with the outer garment. The outer garment and/or the liner or inner layer can include a protective material.
Abstract:
A 3D hand-shaped glove includes a performance-enhancing layer laminated to a fabric glove shell. A flat, solid laminate preform can be prepared with printed graphics, fabric layers, oriented films, dense and/or concentrated fillers, and other features. The 3D hand-shaped glove shell is placed on a 3D laminating form, and the preform is laminated thereto while preserving the 3D shape. In embodiments, the laminating form includes opposing flat surfaces, and a platen or roller press is used. In other embodiments, a bladder or vacuum bag press is used to laminate the preform to a curved or otherwise shaped surface of the laminating form. In embodiments, edge peel resistance is enhanced by extending the perimeter of a low modulus upper layer beyond underlying layers and bonding it directly to the glove shell. Recovery of the glove shell after deformation by the laminating form can provide a warping deformation of the laminate preform.
Abstract:
An apparatus for protecting a power tool user includes a glove or other garment having at least one sensor that monitors proximity to the power tool. Glove embodiments can include finger and/or thumb proximity sensors, and/or sensors that detect hand position, finger and/or wrist joint angle, vibration, and/or acceleration. Sensing targets can be retroactively installed on the power tool, and can define warning and/or danger zones. Sensing can be via magnetic, electromagnetic, capacitive, eddy current, and/or range finding means. Sizes of warning and/or target areas can be controlled by selecting targets from a plurality of targets of various detection ranges. Protective responses can vary according to different sensed events, and can include audible, visual, and/or tactile alerts, and/or interruption of power to the tool. Embodiments can record proximity and/or status data during a work session for review, training, and certification purposes. A controller can be physically cooperative with the garment.
Abstract:
A camouflage system adaptively matches the visible and IR spectrum of surrounding vegetation. A bio-chromophore dye solution circulated through an upper channel and distributed by a pulp or fabric matches the visible and biological IR spectrum, while water evaporated from the upper channel or from a separate lower channel matches the water IR spectrum. Dye can be retained in the pulp or continuously circulated. Permanently printed colors and/or patterns can also be included. Petalation cooperative with a channel flow pattern can release evaporated water and inhibit LiDAR detection. An upper waxy layer and surface embossing can avoid specular reflections. The camouflage signature can be compared with the environment and automatically adjusted as needed. Embodiments include thermal management, electromagnetic shielding, and/or radar scattering/absorbing subsystems. An airbag ground plane can match a terrain contour and avoid LiDAR detection. Multiple zones can provide adaptive display of visible and IR patterns.
Abstract:
The present invention is a method for coloring knit, woven, or non-woven protective textiles made from yarns containing at least 20% synthetic high tenacity fibers, such as para-aramid or liquid crystal polyester (“LCP”), and for package-dyeing and skein-dyeing of such yarns. In embodiments, the textile is scoured to remove any impurities. A base coating of an adhesion promoting primer is then applied, which is typically a polymer or elastomer. The textile is typically immersed at zero tension in the primer liquor for an extended period. Afterward, the primer is dried and then cured at an elevated temperature to cross-link the primer and provide wash-fastness. A dye or printing ink of substantially any desired color and intensity is then applied. The protective yarns can include staple fibers and/or continuous filament fibers. The invention is further applicable to drum coating, jig processing, dye beck and other dying and coating processes.
Abstract:
An MFA panel provides enhanced compressibility and off-axis threat protection by distributing solid elements among a plurality of vertically stacked, flexible supporting sheets, so that the elements on each sheet are spaced apart while the stacked arrangement provides adjacent or overlapping coverage of the panel, while allowing the solid elements to slide over each other during compression. The solid elements can be triangular or square, and can be metal or ceramic. The supporting sheets can be high tensile, such as para aramid, or low tensile, such as PET, Nylon, or cotton, for enhanced compressibility, flexibility, drape, and hand. A high tensile backing ply can be included to inhibit tensile failure of low tensile supporting sheets. In embodiments, the panels are attached to each other only at their edges. Fibers of para aramid supporting sheets can be unidirectional, so as to share the load of an impact throughout the panel.