摘要:
A fast optical switch can be fabricated/constructed, when a vanadium dioxide (VO2) and a two-dimensional (2-D) material is activated by either an electrical pulse (a voltage pulse or a current pulse) or a light pulse just to induce an insulator-to-metal phase transition (IMT) in vanadium dioxide. The applications of such a fast optical switch for an on-demand optical add-drop subsystem, integrating with or without a wavelength converter are also described.
摘要:
A switch activated by a single control photon for routing a single target photon from either of two switch inputs to either of two switch outputs. The device is based on a single quantum emitter, such as an atom, coupled to a fiber-coupled, chip-based optical micro-resonator. A single reflected control photon toggles the switch from high reflection to high transmission mode, with no additional control fields required. The control and target photons are both in-fiber and practically identical, for compatibility with scalable architectures for quantum information processing.
摘要:
A fast optical switch can be fabricated/constructed, when vanadium dioxide (VO2) ultra thin-film or a cluster of vanadium dioxide particles (less than 0.5 microns in diameter) embedded in an ultra thin-film of a polymeric material or in a mesh of metal nanowires is activated by either an electrical pulse (a voltage pulse or a current pulse) or a light pulse just to induce rapid insulator-to-metal phase transition (IMT) in vanadium dioxide ultra thin-film or vanadium dioxide particles embedded in an ultra thin-film of a polymeric material or in a mesh of metal nanowires. The applications of such a fast optical switch for an on-Demand optical add-drop subsystem, integrating with or without a wavelength converter are also described.
摘要:
The invention relates to an optical device. The optical device comprises a waveguide core and a nanocomposite material optically coupled to the waveguide core. The nanocomposite material includes a plurality of quantum dots. The nanocomposite material has a nonlinear index of refraction null that is at least 10null9 cm2/W when irradiated with an activation light having a wavelength null between approximately 3null10null5 cm and 2null10null4 cm.
摘要:
The invention relates to a nanocomposite material. The nanocomposite material comprises a matrix material and a plurality of quantum dots dispersed in the matrix material. The nanocomposite material has a nonlinear index of refraction &ggr; that is at least 10−9 cm2/W when irradiated with light having a wavelength &lgr; between approximately 3×10−5 cm and 2×10−4 cm.
摘要翻译:本发明涉及纳米复合材料。 纳米复合材料包括基体材料和分散在基体材料中的多个量子点。 纳米复合材料当波长λ为约3×10 -5 cm 2和2×10 -4 cm之间的光照射时,具有至少10 -9 cm 2 / W的非线性折射率γ。
摘要:
The invention has improved parameters when compared with prior art devices, pump power was decreased by four orders of magnitude and amplification of signal was increased by two orders of magnitude. The main features of the invention are the following. A nonlinear optical waveguide is made on the basis of a layered MQW-type structure, where unidirectional distributively coupled waves (Ip, Is), e.g. coupled waves having orthogonal polarizations, interact. The wavelength of optical radiation is chosen close to the wavelength of resonance in the structure Input/output elements, taking into account the asymmetry of the cross section of the nonlinear optical waveguide, are mounted at the input and output of the nonlinear waveguide making up a compact nonlinear-optic module. A small electric current is injected across said nonlinear optical waveguide through electrodes, so as to increase the gain and decrease the pump optical power to a high degree. The device also contains a Peltier element and temperature sensor which help to obtain a low predetermined critical power of pump radiation necessary for large signal gain and to set up the necessary operation mode. The method of mounting and the construction of the optical elements of the device are also claimed. The technological reserves can improve already achieved record parameters. The device may be used as all-optical transistor, all-optical switch, logic element and devices based thereon.
摘要:
A light transfer device is provided that includes a first light pathway having a first input and a first output and a second light pathway having a second output. The second light pathway is coupled to the first light pathway, and light from the first input is transferable between the first and second light pathways. An active medium is positioned along one of the first and second light pathways, and the active medium is capable of receiving optical energy that modifies the active medium so that the active medium controls the transfer of light between the first and second pathways.
摘要:
A laser device, in particular a semiconductor laser, emitting optical radiation with a defined mode pattern can be produced from a standard Fabry-Perot (FP) laser by post-processing at the wafer level, i.e. before the wafer is separated into individual dies by cleaving/dicing. A sub-cavity is formed within the FP laser cavity. The sub-cavity has a predetermined length and is located between the FP facets. An aperiodic grating composed of a small number of contrast elements, typically less than 10, with predetermined inter-element separations and predetermined spacings relative to the sub-cavity is formed on or in the optical waveguide. The inter-element separations and the spacings relative to the sub-cavity produce a filtering function of the aperiodic grating for optical radiation propagating in the waveguide. The laser device is suitable for telecommunications applications due to its high side-mode-suppression ratio and narrow-linewidth.
摘要:
An optical switching apparatus comprises an optically resonant system (3, 12) and a pulse source configuration (1, 2) to direct first and second pulses (P1, P2) of optical radiation into the resonant system, the first pulse (P1) being configured to produce a coherent excitation of the resonant optical system so as to change its optical characteristics and the second pulse (P2) being of a phase to thereafter de-excite the coherent excitation produced by the first pulse. According to the invention, a device (13, 34) driveable externally of the resonant system such as an optical amplifier or a laser, maintains the coherence of the excitation produced by the first pulse until de-excited by the second pulse. The optically resonant system may comprise an optically responsive medium (3) which is capable of being switched into a state of coherent resonance or a resonant cavity.
摘要:
A nonlinear Y-junction waveguide structure includes a straight linear waveguide, and a nonlinear waveguide partially joined to the linear waveguide and bent through a desired angle at an output end portion thereof, whereby incident light coming into the linear waveguide travels mainly along the linear waveguide when it has a power lower than a predetermined level while traveling mainly along the nonlinear waveguide when it has a power not lower than the predetermined level. The nonlinear Y-junction waveguide structure has an increased branching angle as compared to the conventional completely-operating optical device and exhibits an abrupt switching phenomenon. Accordingly, it is possible to achieve an easy adjustment of the critical power. In this regard, there is no difficulty in the fabrication of the waveguide structure.