Abstract:
A method of controlling a concentration or range of concentrations of a liquid or gas in an enclosure is provided. The method includes positioning an injection station within the enclosure, the injection station includes a liquid or gas source, a sprayer assembly and a system that delivers the liquid or gas from the liquid or gas source to the sprayer assembly. A concentration level of the liquid or gas in the environment surrounding the injection station is monitored using a sensor and the sensor providing a signal indicative of the concentration level to a controller. The controller controls the flow of the liquid or gas to the sprayer assembly based on the signal.
Abstract:
A chemical injection system for a resource extraction system includes a controller having a memory and a processor. The memory stores instructions that cause the processor to receive a first pressure from a first pressure sensor of the resource extraction system, receive a second pressure from a second pressure sensor of the resource extraction system, determine a flowrate of a produced fluid of the resource extraction system based on the first pressure and the second pressure, determine an ion concentration of the produced fluid, and adjust an injection rate of a chemical into the resource extraction system based on the flowrate of the produced fluid, the ion concentration of the produced fluid, or both.
Abstract:
The invention relates to a resin infusion process wherein a curable flowing fluid resin composition is supplied to form a curable matrix around a fibrous reinforcement material, wherein the curable flowing fluid resin composition comprises a resin component (1) and an activator component (2), and at least one property of the curable flowing fluid resin composition is monitored prior to supply.
Abstract:
The present invention makes it easy to control the amount of material gas led out of a tank. Accordingly, carrier gas is introduced into a tank containing a material and together with the carrier gas, from the tank, material gas produced by vaporization of the material is led out. A control part controls the flow rate of the carrier gas so that a concentration index value obtained by measuring mixed gas led out of the tank and indicating the concentration of the material gas in the mixed gas comes close to a predetermined target concentration index value. In addition, the control part controls the flow rate of the carrier gas to change at a predetermined change rate, and then controls the flow rate of the carrier gas on the basis of the deviation between the concentration index value and the target concentration index value.
Abstract:
Embodiments of the present invention relate to a method and apparatus for mixing additives into a fluid fuel at a predictable concentration. The method comprises: taking a sample of the fuel; mixing the additive into the sample in metered proportions; testing the sample to determine that the correct amount of additive is present; storing the remaining fuel until it is time for the fuel to be used; and mixing the additive into the remainder of the fuel in the same metered proportions.
Abstract:
A method and apparatus for automatically controlling partial pressure of oxygen in the breathing loop of a rebreather diving system. A diver may adjustably select a control parameter to maintain partial pressure of oxygen at a setpoint that varies with ambient pressure and is within a range between a maximum safe partial pressure of oxygen at depth and a minimum safe partial pressure of oxygen for the purpose of biasing the performance of the rebreather either towards minimizing gas venting from the rebreather breathing loop or minimizing decompression time. A method and apparatus for managing and monitoring the use of dive resources in comparison with a target dive time specified by the diver, calculating and indicating remaining dive time based on dive resource values and calculating and indicating dive resource values required to meet preselected dive resource end values and dive requirements.
Abstract:
A method and apparatus for automatically controlling partial pressure of oxygen in the breathing loop of a rebreather diving system. A diver may adjustably select a control parameter to maintain partial pressure of oxygen at a setpoint that varies with ambient pressure and is within a range between a maximum safe partial pressure of oxygen at depth and a minimum safe partial pressure of oxygen for the purpose of biasing the performance of the rebreather either towards minimizing gas venting from the rebreather breathing loop or minimizing decompression time. A method and apparatus for managing and monitoring the use of dive resources in comparison with a target dive time specified by the diver, calculating and indicating remaining dive time based on dive resource values and calculating and indicating dive resource values required to meet preselected dive resource end values and dive requirements.
Abstract:
An apparatus, method and system for delivering CO2 into an inspiratory gas stream to formulate a blended respiratory gas in a manner that continuously maintains a target CO2 concentration in a volume of the inspired respiratory gas, for example, over the course of a breath or a volumetrically definable part thereof or a series of partial or full breaths.
Abstract:
A method comprises transporting a first stream of a carrier gas to a delivery device that contains a solid precursor compound. The first stream of carrier gas is at a temperature greater than or equal to 20° C. The method further comprises transporting a second stream of the carrier gas to a point downstream of the delivery device. The first stream and the second stream are combined to form a third stream, such that the dewpoint of the vapor of the solid precursor compound in the third stream is lower than the ambient temperature. The flow direction of the first stream, the flow direction of the second stream and the flow direction of the third stream are unidirectional and are not opposed to each other.
Abstract:
A system and method for providing a plurality of diluted solutions are disclosed. Successive dilution operations are performed upon mixing vessels substantially simultaneously. Measured source volumes of a source solution are placed into the mixing vessels. First measured volumes of a liquid are added to the mixing vessels. Measured first waste volumes are dispensed from the mixing vessels. Second measured volumes of the liquid are added to the mixing vessels. Measured second waste volumes are dispensed from the mixing vessels. Third measured volumes of the liquid are added to the mixing vessels. Each vessel has an individual target dilution ratio. Measured volumes and number of dilution operations are individual to each of the mixing vessels.