摘要:
In a semiconductor island structure with passive side isolation, a method and structure for reducing corner breakdown where a device conductor crosses the edge of the island. The decrease in the field strength at the island edge between the conductor and the adjacent conducting region may be achieved by increasing the depth of the insulator beneath the conductor where it crosses the island edge without the necessity for increasing the thickness of the layer of insulation applied directly to the surface of the island by the use of a second or higher level interconnect, e.g., the conventional deposition of one or more additional layers of insulation over the device terminal to increase the spacing between the conductor and the surface of the island. In this way the process by which the device is constructed may remain unchanged. The decrease in the field strength at the island edge may alternatively or in addition be achieved by increasing the thickness of the insulator providing lateral isolation without increasing the thickness of the substrate isolation by the use of lateral trench isolation formed independently of the substrate isolation.
摘要:
An ion-implanted JFET has a channel barrier region at the top gate surface self-aligned to the source and drain, thereby maintaining sufficient separation between the channel barrier and the source and drain for attaining a high source/drain breakdown voltage. After a top gate and an underlying channel layer are ion-implanted through a thin oxide layer, a first photoresist layer is formed and patterned to expose surface portions of the thin oxide layer where source, drain and channel barrier regions are to be formed. Through these apertures in the first photoresist mask, shallow high impurity concentration surface region are ion-implanted. A second photoresist layer is formed on the first photoresist layer, and patterned to completely expose the first and second apertures in the first photoresist layer and to remove material of the second photoresistor layer down to the surface of the the oxide layer, while masking the barrier region. Source and drain regions are then implanted through the second photoresist layer and the exposed first and second apertures of the first mask. The dose and implantation energy is such that the second implant effectively overrides the shallow regions of the first implant. Because the locations at which the source and drain regions in the underlying semiconductor material are formed are defined by the pattern in the first photoresist mask, the source and drain regions are self-aligned with the barrier region.
摘要:
A method of manufacturing semiconductor devices with increased operating voltages is described. A dopant of a second conductivity type is implanted into a region of a first epitaxial layer of the first conductivity type to form a buried layer. A substantially smaller dosage of a faster-diffusing dopant of the second conductivity type is then implanted into the buried layer region. The second epitaxial layer of the first conductivity type is formed over the first epitaxial layer. A region of the second epitaxial layer overlying the doped region of the first epitaxial layer is implanted with a dopant of the second conductivity type and diffused to form a doped well. The faster-diffusing dopant diffuses upward to make good electrical contact with the doped well diffusing downward from the surface. The lateral diffusion of the faster-diffusing dopant can be contained, so that lateral spacing design rules do not have to be increased. A thicker second epitaxial layer can thus be used, resulting in increased operating voltage.
摘要:
An avalanche photodiode includes a region of second conductivity type extending a distance into a substrate and a region of first conductivity type extending a further distance into the substrate of first conductivity type with a P-N junction therebetween. The invention is a method for fabricating an avalanche photodiode having a specified breakdown voltage. The method includes the step of measuring the concentration of the first type conductivity modifiers and removing a portion of the surface of the substrate prior to forming the region of second conductivity type. This method provides control of the concentration of the first type conductivity modifiers at the P-N junction and thereby controls the breakdown voltage.
摘要:
A method of manufacturing semiconductor devices with increased operating voltages is described. A dopant of a second conductivity type is implanted into a region of a first epitaxial layer of the first conductivity type to form a buried layer. A substantially smaller dosage of a faster-diffusing dopant of the second conductivity type is then implanted into the buried layer region. The second epitaxial layer of the first conductivity type is formed over the first epitaxial layer. A region of the second epitaxial layer overlying the doped region of the first epitaxial layer is implanted with a dopant of the second conductivity type and diffused to form a doped well. The faster-diffusing dopant diffuses upward to make good electrical contact with the doped well diffusing downward from the surface. The lateral diffusion of the faster-diffusing dopant can be contained, so that lateral spacing design rules do not have to be increased. A thicker second epitaxial layer can thus be used, resulting in increased operating voltage.
摘要:
Problems arise when connecting the bottom plate of a ferroelectric capacitor to the source of its associated access transistor during the fabrication of an ultra large scale integrated memory circuit. The temperature and ambient of certain steps of the fabrication process adversely affects ohmic properties of the connection. To overcome these problems, an insulative layer is formed between the bottom plate of a ferroelectric capacitor and its associated transistor. The insulative layer separates the source from the bottom electrode, and subsequent high temperature swings during the remainder of the fabrication process do not produce any direct connection between the source and the bottom plate. After the memory circuits have been fabricated on the semiconductor wafer, a voltage is applied across the ferroelectric capacitor and the insulative layer, preferably during a wafer probe. The magnitude of the applied voltage is selected to breakdown the insulative layer, but does not damage the ferroelectric layer. As a result, a good ohmic contact is produced between the bottom plate and the source of its associated transistor.
摘要:
A diode which includes a first region formed in a polycrystalline silicon layer formed on a substrate. The diode has a predetermined width W and is one of an intrinsic region and a region including impurities at a low concentration therein, a second region and a third region including P-type impurities and N-type impurities therein respectively and both being oppositely arranged from each other with the first region therebetween in the polycrystalline silicon layer. Electrodes are electrically connected to the second region and the third region respectively, and further the film characteristic of the polycrystalline silicon layer and the predetermined width W thereof are determined in such a manner as to fulfill the following equation:W.sub.D .ltoreq.W.ltoreq.LL represents a carrier diffusion length and W.sub.D represents a width of the depletion layer created in the polycrystalline silicon layer when the voltage corresponding to the withstand voltage required by the polycrystalline diode as mentioned above, is applied thereto.
摘要翻译:一种二极管,其包括形成在形成于基板上的多晶硅层中的第一区域。 二极管具有预定的宽度W,并且是本征区域和包括其中低浓度的杂质的区域中的一个,第二区域和分别包括P型杂质和N型杂质的第三区域,并且两者分别从 在多晶硅层中彼此具有第一区域。 电极分别电连接到第二区域和第三区域,并且进一步确定多晶硅层的膜特性和其预定宽度W,以便满足以下等式:WD W = LL表示载流子扩散长度,当表示与上述多晶二极管所要求的耐电压相对应的电压时,WD表示在多晶硅层中产生的耗尽层的宽度。
摘要:
In a semiconductor island structure with passive side isolation, a method and structure for reducing corner breakdown where a device conductor crosses the edge of the island. The decrease in the field strength at the island edge between the conductor and the adjacent conducting region may be achieved by increasing the depth of the insulator beneath the conductor where it crosses the island edge without the necessity for increasing the thickness of the layer of insulation applied directly to the surface of the island by the use of a second or higher level interconnect, e.g., the conventional deposition of one or more additional layers of insulation over the device terminal to increase the spacing between the conductor and the surface of the island. In this way the process by which the device is constructed may remain unchanged. The decrease in the field strength at the island edge may alternatively or in addition be achieved by increasing the thickness of the insulator providing lateral isolation without increasing the thickness of the substrate isolation by the use of lateral trench isolation formed independently of the substrate isolation.
摘要:
A field-effect, power-MOS transistor wherein a region under the gate contact pad is specially doped with a dopant that is electrically compatible with that in the transistor's channel to obviate problems of electrical breakdown in that region.
摘要:
A mixed thin-film and bulk semiconductor substrate (10, 30) for integrated circuit applications is made with two different processes. In the first process, a standard wafer (11) is masked around its periphery (14). The internal unmasked portion (16) is implanted with an insulating species to form a buried dielectric layer (18), thus forming a mixed thin-film and bulk semiconductor substrate. Alternatively, a thin-film wafer may be masked on an internal portion (36) and then etched to expose a portion (40) of the underlying bulk substrate (11') around the periphery of the wafer. An epitaxial layer (50) is then grown to build up the exposed bulk portion to form the mixed substrate. An isolation region (24, 52, 46, 54) is formed at a boundary between the thin-film portion and the bulk portion. Devices (27, 28, 28') having different voltage requirements may then be formed overlying appropriate portions of the mixed substrate.