Abstract:
The present disclosure provides for a method of obtaining metals from a source, including contacting the source with an ionic liquid in the absence of acid, thereby extracting the metals from the source and providing an ionic liquid extraction composition; and recovering the metals from the ionic liquid extraction composition, wherein the source includes coal, coal by-products, ore, tar, or electronic waste. Further, the present disclosure provides for a carbon material made by a process that includes contacting a source with an ionic liquid in the absence of acid, thereby extracting metals from the source and providing an ionic liquid extraction composition; and recovering the metals from the ionic liquid extraction composition, wherein the source includes coal, coal by-products, ore, tar, or electronic waste, further wherein the carbon material includes solids, liquids, carbon films, carbon fibers, carbon nanomaterials, or any combination thereof.
Abstract:
The invention relates to a process for selectively and continuously extracting a series of desired species from a matrix, comprising the steps of:—injecting a plasma (310) in an extraction chamber by means of a plasma torch,—continuously monitoring (320) the excited elements extracted from the matrix and contained in the plasma by optical emission spectroscopy, and for each species of the series,—setting a distance (330) between the support and the plasma torch, and the composition of the injected plasma as a function of the monitored excited elements so that only one desired species of the series of species is being extracted from the matrix under molecular form, and—providing (400) a plate in the extraction chamber, exterior to the plasma, causing collection of molecules comprising said desired species by deposition onto the surface of the plate.
Abstract:
Disclosed is a method of fabricating a construction element, the method comprising the manufacturing of a construction element including a slag, wherein the slag is comprising, on a dry basis and whereby the presence of a metal is expressed as the total of the metal present as elemental metal and the presence of the metal in an oxidized state, a) at least 7% wt and at most 49% wt of iron, Fe, b) at most 1.3% wt of copper, Cu, c) at least 24% wt and at most 44% wt of silicon dioxide, SiO2, d) at least 1.0% wt and at most 20% wt of calcium oxide, CaO, e) at least 0.10% wt and at most 1.50% wt of zinc, Zn, f) at least 0.10% wt and at most 2.5% wt of magnesium oxide, MgO, and g) at most 0.100% wt of lead, Pb. Further disclosed are improved construction elements comprising the slag.
Abstract:
An environmentally friendly (e.g. no acid, base, or cyanide) system and process for large scale extraction of metal ion into aerobic molten salt (or ionic liquid) and the electrodeposition of metal (e.g. copper, gold, silver, etc.) from the metal ion dissolved in the molten salt. The non-volatile low vapor pressure liquid salt is reusable, and heat from the molten slag can heat the molten salts or ionic liquids. Another embodiment comprises a one-pot apparatus for the extraction of metal (e.g. copper) from metal earths and electrodepositing the metal using a low melting (209° C.) aerated Na—K—Zn chloride salt in which copper metal oxidizes and is converted to soluble copper chloride. When an electrical power supply is connected to the graphite vessel (cathode) and to copper rods in the melt (anodes), then the copper chloride is deposited as copper metal by electroreduction on the bottom of the graphite reaction vessel.
Abstract:
A method of reducing metal oxides in a plasma arc torch comprising a cathode and an anode. The method comprises collecting a set of metallic oxide ore and filtering the set of ore based on a particle size. The method further comprises preprocessing the filtered ore with the application of a heat gradient or an electric current. The preprocessed ore is mixed with a composition of reduction gases. The mixture is injected into the plasma arc torch to form a post-plasma mixture. The method further comprises collecting the post-plasma mixture and analyzing the post-plasma mixture. The method also comprises separating the post-plasma mixture into a set of slag and a set of liquid.
Abstract:
The present disclosure concerns an apparatus suitable for smelting and separating metals in flexible oxido-reduction conditions. More particularly, it concerns an apparatus for smelting metallurgical charges comprising a bath furnace susceptible to contain a molten charge up to a determined level, characterized in that the furnace is equipped with: at least one non-transfer plasma torch for the generation of first hot gases; at least one oxygas burner for the generation of second hot gasses; and, submerged injectors for injecting said first and second hot gases below said determined level.
Abstract:
This invention relates generally to novel methods and novel devices for the continuous manufacture of nanoparticles, microparticles and nanoparticle/liquid solution(s). The nanoparticles (and/or micron-sized particles) comprise a variety of possible compositions, sizes and shapes. The particles (e.g., nanoparticles) are caused to be present (e.g., created) in a liquid (e.g., water) by, for example, preferably utilizing at least one adjustable plasma (e.g., created by at least one AC and/or DC power source), which plasma communicates with at least a portion of a surface of the liquid. At least one subsequent and/or substantially simultaneous adjustable electrochemical processing technique is also preferred. Multiple adjustable plasmas and/or adjustable electrochemical processing techniques are preferred. The continuous process causes at least one liquid to flow into, through and out of at least one trough member, such liquid being processed, conditioned and/or effected in said trough member(s). Results include constituents formed in the liquid including micron-sized particles and/or nanoparticles (e.g., metallic-based nanoparticles) of novel size, shape, composition and properties present in a liquid.
Abstract:
A method of producing a metal alloy utilizing aluminum smelter waste while simultaneously remediating the waste by converting the metallic and nonmetallic components to a non-hazardous slag. The method includes providing aluminum smelter, obtaining finely divided aluminum and/or spent pot liner from the aluminum smelter, and producing an alloy by oxidizing the finely divided aluminum and/or spent pot liner in the presence of nickelferous iron ore and heat. The non-hazardous slag is also produced during the process as a result of utilization of the nickelferous iron ore.
Abstract:
Method for preparing metal from metal precursor solution and the application thereof are provided. The metal precursor solution is treated by atmospheric pressure plasma jet (APPJ) and therefore transform into the metal.
Abstract:
Apparatuses and processes for recycling printed wire boards, wherein electronic components, precious metals and base metals may be collected for reuse and recycling. The apparatuses generally include a mechanical solder removal module and/or a thermal module, a chemical solder removal module, and a precious metal leaching module, wherein the modules are attached for continuous passage of the e-waste from module to module.