摘要:
A magnetic recording head includes a trailing shield and a main pole. A trailing shield gap is between the trailing shield and the main pole. A spin orbital torque structure is within the trailing shield gap. The spin orbital torque structure includes a spin torque layer having a first side and a second side at a media facing surface. A first spin Hall layer is along the first side of the spin torque layer. A second spin Hall layer is along the second side of the spin torque layer. The first spin Hall layer comprises a heavy metal material having a positive spin Hall angle. The second spin Hall layer comprises a heavy metal material having a negative spin Hall angle.
摘要:
Magnetic sensors using spin Hall effect and methods for fabricating same are provided. One such magnetic sensor includes a spin Hall layer including an electrically conductive, non-magnetic material, a magnetic free layer adjacent to the spin Hall layer, a pair of push terminals configured to enable an electrical current to pass through the magnetic free layer and the spin Hall layer in a direction that is perpendicular to a plane of the free and spin Hall layers, and a pair of sensing terminals configured to sense a voltage when the electrical current passes through the magnetic free layer and the spin Hall layer, where each of the push and sensing terminals is electrically isolated from the other terminals.
摘要:
A magnetic sensor that generates a signal based on inverse spin Hall effect. The sensor includes a magnetic free layer and a non-magnetic, electrically conductive spin Hall layer located adjacent to the magnetic free layer. Circuitry is configured to supply an electrical current that travels through the magnetic free layer and the spin Hall layer in a direction that is generally perpendicular to the plane of the layers or perpendicular to a plane defined by an interface between the magnetic free layer and the spin Hall layer. The inverse spin Hall effect causes an electrical voltage in the spin Hall layer as a result of the current, and the voltage changes relative to the orientation of magnetization of the magnetic free layer. Circuitry is provided for measuring the voltage in the spin Hall layer in a direction that is generally perpendicular to the direction of the electrical current.
摘要:
A system comprising a sensor with a free layer that exhibits an anomalous Hall effect is disclosed. Further, the sensor has a magnetic underlayer below the free layer in a track direction for biasing a magnetic orientation of the free layer in a first magnetic orientation, and a magnetic overlayer above the free layer in the track direction for biasing the magnetic orientation of the free layer in the first magnetic orientation. Still further, the sensor has a lower nonmagnetic spacer layer between the magnetic underlayer and the free layer, and an upper nonmagnetic spacer layer between the magnetic overlayer and the free layer.
摘要:
A magnetic sensor reduces thermal fluctuation and realizes high-sensitive signal detection using a spin Hall device of a simple structure configured with only one magnetic layer. The magnetic sensor includes a stacked film in which a nonmagnetic spin Hall layer, a nonmagnetic insulator layer, and a magnetic layer are stacked, an electrode nonmagnetic terminal pair connected to a side surface of the nonmagnetic spin Hall layer, and a unit applying a current in a film thickness direction of the stacked film. A thickness of the nonmagnetic spin Hall layer is thinner than twice a spin diffusion length of a material constituting the nonmagnetic spin Hall layer. A magnetization direction of the magnetic layer magnetized by an external magnetic field is detected due to the polarity of a voltage across both ends of the electrode nonmagnetic terminal pair.
摘要:
A magnetic head has a sensor which employs the “Hall effect”. In one illustrative example, the sensor includes a generally planar body made of a semiconductor heterostructure; first and second contacts comprising first and second drains, respectively, which are formed over a first end of the body and spaced equally apart from a centerline of the body; and a third contact comprising a source formed over a second end of the body which is opposite the first end of the body. The semiconductor heterostructure is comprised of a high mobility two-dimensional electron or hole gas close to an air bearing surface (ABS) of the magnetic head so as to be exposed to magnetic field lines substantially normal to it from magnetically recorded bits. Advantageously, the sensor does not require magnetic materials utilized in conventional sensors and therefore does not suffer from magnetic noise associated therewith.
摘要:
An optical disc apparatus in accordance with the present invention includes: a plurality of light sources; an optical system which has at least an objective lens that condenses light beam emitted from the light sources on a recording layer of an optical disc and a collimator lens that is arranged between the light sources and the objective lens; a lens tilting mechanism which tilts the objective lens; a collimator lens driving mechanism which moves the collimator lens along an optical axis direction; and a most appropriate setting deciding portion which decides in a prescribed timing a most appropriate setting about position of the collimator lens and tilting of the objective lens while changing the position of the collimator lens and the tilting of the objective lens utilizing the collimator lens driving mechanism and the lens tilting mechanism.
摘要:
A disk drive having a magnetic recording disk with a transition zone is described. A surface texture of the transition zone induces the head to fly at a greater height than when operating over a data zone, while transitioning the head to a landing zone to park.
摘要:
A giant magneto-resistive (GMR) sensor for a magnetic head for a hard disk drive is disclosed. The sensor includes: a free magnetic layer; a bias layer that provides a bias magnetic field to the free magnetic layer and a bias pinning layer that provides a stabilizing magnetic field to the bias layer and that has a width substantially longer than the width of the free magnetic layer. Embodiments of the invention may further include an anti-ferromagnetic layer having a width substantially longer than the width of the free layer, or both an anti-ferromagnetic layer and a pinned magnetic structure each having a width substantially longer than the width of the free layer.
摘要:
A nonvolatile hybrid memory cell is provided which includes magnetic and semiconductor components. The cell uses a thin film stack of ferromagnetic layers situated over a silicon substrate to store data in the form of variable impedance to a spin polarized current. The cell data is isolated by semiconductor isolation elements.