摘要:
The present disclosure relates generally to processes and systems for producing liquid transportation fuels by converting a feed stream that comprises both isopentane and n-pentane, and optionally, some C6+ hydrocarbons. Isopentane and smaller hydrocarbons are separated to form a first fraction while n-pentane and larger components of the feed stock form a second fraction. Each fraction is then catalytically-activated in a separate reaction zone with a separate catalyst, where the conditions maintained in each zone maximize the conversion of each fraction to olefins and aromatics, while minimizing the production of C1-C4 light paraffins. In certain embodiments, the first fraction is activated at a lower temperature than the second fraction. Certain embodiments additionally comprise mixing at least a portion of the two effluents and contacting with an alkylation catalyst to provide enhanced yields of mono-alkylated aromatics that are suitable for use as a blend component of liquid transportation fuels or other value-added chemical products.
摘要:
The present disclosure relates generally to processes and systems for producing liquid transportation fuels by converting a feed stream that comprises both isopentane and n-pentane, and optionally, some C6+ hydrocarbons. Isopentane and smaller hydrocarbons are separated to form a first fraction while n-pentane and larger components of the feed stock form a second fraction. Each fraction is then catalytically-activated in a separate reaction zone with a separate catalyst, where the conditions maintained in each zone maximize the conversion of each fraction to olefins and aromatics, while minimizing the production of C1-C4 light paraffins. In certain embodiments, the first fraction is activated at a lower temperature than the second fraction. Certain embodiments additionally comprise mixing at least a portion of the two effluents and contacting with an oligomerization catalyst to provide enhanced yields of aliphatic hydrocarbons that possess the characteristics of a blend component of a liquid transportation fuel or other value-added chemical products.
摘要:
Alkylation systems and processes are described herein. The alkylation system generally includes a preliminary alkylation system containing a preliminary alkylation catalyst therein and adapted to contact an aromatic compound and an alkylating agent with the preliminary alkylation catalyst so as to alkylate the aromatic compound and form a preliminary output stream, wherein the preliminary alkylation system includes a first preliminary alkylation reactor and a second preliminary alkylation reactor connected in parallel to the first preliminary alkylation reactor and a primary alkylation system adapted to receive the preliminary output stream and contact the preliminary output stream and the alkylating agent with a primary alkylation catalyst disposed therein so as to form a primary output stream.
摘要:
In a process for producing cyclohexylbenzene, benzene is contacted with hydrogen under hydroalkylation conditions effective to form a first effluent stream comprising cyclohexylbenzene, cyclohexane, methylcyclopentane, and unreacted benzene. At least a portion of the first effluent stream is contacted with a dehydrogenation catalyst under dehydrogenation conditions to convert at least a portion of the cyclohexane to benzene thereby forming a second effluent stream. The amount of methylcyclopentane in the second effluent stream is different by no more than 65% of the total amount of the portion of the first effluent stream, said amounts being on a weight basis. A methylcyclopentane-containing stream is removed from either the first or the second effluent stream and at least a portion of the second effluent stream containing benzene is recycled to the hydroalkylation step.
摘要:
A process for producing a feed for a stream cracker. At least a portion of the C6 cyclic hydrocarbons are removed from a stream prior to it being passed into an isomerization zone. Disproportionation reaction selectivity is increased, producing valuable C3 hydrocarbons and C4 hydrocarbons. Also, a higher ring opening conversion of C5 cyclic hydrocarbons is observed. The yield may be adjusted by controlling an amount of C6 cyclic hydrocarbons passed to the isomerization zone. The catalyst in the isomerization zone is free of chloride, and the streams including effluent from the isomerization zone may be passed to a steam cracker without requiring chloride removal.
摘要:
The present invention relates to a process for the manufacture of alkanes comprising a catalytic reaction resulting from contacting methane with at least one other starting alkane (I) in the presence of a metal compound (C) capable of catalysing a reaction for the splitting and/or recombination of a carbon-carbon bond and/or of a carbon-hydrogen bond and/or of a carbon-metal bond, which catalytic reaction results in the formation of at least one final alkane (II) having a number of carbon atoms equal to or greater than (2). In the process, the contacting operation is carried out under a methane partial pressure equal to or greater than 0.1 MPa, preferably in the range from 0.1 to 100 MPa. The metal compound (C) can be chosen from metal compounds supported on and dispersed over a solid support, metal compounds supported on and grafted to a solid support and non-supported metal compounds. Under these conditions, it was found that the yield of the catalytic reaction was improved, and that the catalytic stability and activity of the metal compound (C) over timer were greatly enhanced.
摘要:
Aluminosilicate zeolites are prepared containing an outer aluminum-free shell. The outer shell is essentially SiO.sub.2 that has crystallized on the zeolite surface in the ZSM-5 type configuration, leading to a more selective catalyst.
摘要:
Aluminosilicate zeolites are prepared containing an outer aluminum-free shell. The outer shell is essentially SiO.sub.2 that has crystallized on the zeolite surface in the ZSM-5 type configuration, leading to a more selective catalyst.
摘要:
A HYDROCARBON CONVERSION PROCESS INVOLVING ALKYLATION AND DISPROPORTIONATION OF LOW OCTANE C7 ALKANE STREAMS IN THE PRESENCE OF ISOBUTANE TO FORM HIGHER OCTANE MIXTURES OF PREDOMINATLY SATURATED HYDROCARBONS, SAID PROCESS UTILIZING A MIXTURE OF FLUOROSULFONIC ACID AND ANTIMONY PENTAFLUORIDE AS A CATALYST.