Abstract:
A polyol pre-mix composition includes a blowing agent having a halogenated hydroolefin, a polyol, a catalyst composition, and an antioxidant. The antioxidant may be, for example, a benzene diol or a benzene triol or other polyhydroxy-substituted aromatic compound, which is optionally substituted with one or more substituents such as alkyl groups. A two-part system for producing a thermosetting foam blend includes (a) a polyisocyanate and, optionally, one or more isocyanate compatible raw materials; and (b) the polyol pre-mix composition. A method for producing a thermosetting foam blend includes combining: (a) a polyisocyanate; and (b) the polyol pre-mix composition.
Abstract:
The invention relates to an aqueous fluoropolymer coating composition for direct application to glass without the need for pre-treatment of the glass surface. The coating composition can also be used with other non-porous and porous substrates. The fluoropolymer coating contains a hydroxyl-functional fluoropolymer, and polyisocyanates. Preferably the coating composition also contains a water-dispersible hydroxyl functional polyurethane. The coating composition may exist as a 1-pack or a multi-pack coating system. The coating has excellent wet adhesion to glass, good weathering, chalking resistance, chemical resistance, and dirt pickup resistance.
Abstract:
The present invention relates to foam products made with blowing agent compositions comprising at least one hydrochlorofluoroolefin (HCFO) used in the preparation of foamable thermoplastic compositions. The HCFOs of the present invention include, but are not limited to, 1-chloro-3,3,3-trifluoropropene (HCFO-1233zd), particularly the trans-isomer, 2-chloro-3,3,3-trifluoropropene (HCFO-1233xf), dichloro-fluorinated propenes, and mixtures thereof. The blowing agent compositions of the present invention are used with coblowing agents including carbon dioxide, atmospheric gases, hydrofluorocarbons (HFC), hydrofluoroolefins (HFO), alkanes, hydrofluoroethers (HFE), and mixtures thereof. Preferred HFCs used as coblowing agents in the present invention include, but are not limited too, 1,1,1,2-tetrafluoroethane (HFC-134a), 1,1-difluoroethane (HFC-152a), 1,1,1-trifluoroethane (HFC-143a), pentafluorethane (HFC-125), difluoromethane (HFC-32). The blowing agent compositions are useful in the production of low density insulating foams with improved k-factor.
Abstract:
A multiphase emulsion polymer for aqueous coating compositions containing little or no organic solvent includes at least one soft phase and at least one hard phase prepared by a multi-stage emulsion polymerization. The hard phase contains a hard phase polymer having a glass transition temperature in a range from I0 C to 100 C which is more than 50 C higher than that of the soft phase polymer. The hard phase is formed as a first stage polymer and the one soft phase is subsequently polymerized in the presence of the first stage polymer. The hard phase polymer includes at least one carboxylic acid monomer and at least one ethylenically unstaturated monomer. A method of making a multiphase emulsion polymer for aqueous coating compositions containing zero or low levels of organic solvent is disclosed. Such aqueous coating compositions may simultaneously have excellent block resistance, freeze thaw stability and low temperature coalescence characteristics.
Abstract:
The invention relates to an article that has been obtained by the melt-process recycling of one or more multi-layer articles, where the multi-layer articles are composed of at least one melt-processible polyvinylidene fluoride layer. The composition of the invention is a compatible blend of the different layers from the multi-layer articles. The other layers of the multi-layer articles are also melt-processible, and include one or more layers chosen from: a) a melt-processible fluoropolymer of a different composition, b) a non-fluoropolymer, and c) a barrier layer. The composition is useful for forming an article in a melt-process operation. The composition may be used by itself, may be blended with other virgin or recycled materials, or may be used at low levels with melt-processible polymers as a process aid.
Abstract:
The invention relates to impact-modified polymer compositions, containing a polymer blend of polycarbonate with polyester and/or polyamide, plus an impact modifier blend of core/shell and functional polyolefin impact modifiers. The impact modifiers can provide the polymer blend composition with improved impact strength at equivalent loading, and also allow for higher amounts of polyester and/or polyamide in the blend without sacrificing impact strength.
Abstract:
The invention relates to heat transfer agents and heat transfer compositions containing hydrocarbon lubricating oils and halogenated alkene heat transfer fluid that promote oil flow and provide for improved oil return. The heat transfer compositions are useful in various heat transfer systems such as refrigeration, cooling, air conditioning, chiller operations.
Abstract:
The method of inhibiting the polymerization of a mono-ethylenically unsaturated carboxylic acid, anhydride, ester or neutralized or partially neutralized salt, e.g., an acrylic acid or ester, in an aqueous solution and in the presence of oxygen, the method comprising the step of mixing with the aqueous solution an inhibitor comprising (i) at least 50 ppm of an N-oxyl compound, e.g., 4-hydroxy-TEMPO, and (ii) a manganese ion, the N-oxyl compound and manganese ion present in a N-oxyl compound to manganese ion weight ratio of 50:1 to less than 100:1. based on the mono-ethylenically unsaturated carboxylic acid, anhydride, ester or salt.
Abstract:
Disclosed is a composition comprising a PVDF polymer, from 0.01-3% of one or more quaternary organic salts and 10 to 1000 ppm of one or more dispersing agents, having reduced optical haze, high melt temperature, and high modulus. Also disclosed is a method of preparing the composition.
Abstract:
A stable polyol pre-mix composition comprises a blowing agent, a polyol, a surfactant, and a catalyst composition comprising an oxygen-containing amine catalyst and a metallic salt. The oxygen-containing amine catalyst may be, for example, one or more of an alkanol amine, an ether amine, or a morpholine group-containing compound such as, for example, 2-(2-dimethylaminoethoxy)ethanol or N,N,N′-trimethylaminoethyl-ethanolamine. The metallic salt may be, for example, alkali earth carboxylates, alkali carboxylates, and carboxylates of metals selected form the group consisting of zinc (Zn), cobalt (Co), tin (Sn), cerium (Ce), lanthanum (La), aluminum (Al), vanadium (V), manganese (Mn), copper (Cu), nickel (Ni), iron (Fe), titanium (Ti), zirconium (Zr), chromium (Cr), scandium (Sc), calcium (Ca), magnesium (Mg), strontium (Sr), and barium (Ba).