Abstract:
An electronic device reads a layout file of a printed circuit board (PCB) to be manufactured from a storage device, obtains length information and section area information of copper cladding distributed on power source areas and ground trace areas in each of one or more layers of the PCB to be manufactured by analyzing the layout file, and calculates power loss in each of the one or more layers according to the length information, the section area information, a resistance value of the copper cladding, and preset parameters of a power supply module and an integrated circuit (IC) load to be located on the PCB. In response to a determination that the power loss in the layer exceeds a preset range, the electronic device indicates the locations of the power source areas and the ground trace areas of a layer in the PCB layout file which need to be redesigned.
Abstract:
A printed circuit board includes a top layer and a bottom layer. A power supply and an electronic component are located on the top layer. The power supply is connected to the top layer and the bottom layer through a first via. A number of second vias extends through the top layer and the bottom layer, and is electrically connected to the top layer and the bottom layer. A right-angled triangular void area without vias defined therein is formed on the printed circuit board, between the second vias and the electronic component. The second vias are arranged on a hypotenuse of the void area.
Abstract:
A voltage regulating circuit includes a pulse width modulation controller, a current sense circuit, a voltage feedback circuit, and a gain-and-bias circuit. The current sense circuit includes an inductor and a capacitor. The voltage feedback circuit includes first and second resistors. The gain-and-bias circuit includes an operational amplifier. A first terminal of the capacitor is connected to an inverting input terminal of the operational amplifier through a third resistor. A second terminal of the capacitor is connected to a non-inverting input terminal of the operational amplifier through a fourth resistor. The inverting input terminal of the amplifier is connected to an output terminal of the operational amplifier through a fifth resistor. The non-inverting input terminal of the operational amplifier is grounded through a sixth resistor. The output terminal of the operational amplifier is connected to the node between the first and second resistors through a seventh resistor.
Abstract:
A printed circuit board includes a signal layer, a dielectric layer, and a reference layer. The signal layer includes a pair of differential signal lines. The dielectric layer is sandwiched between the signal layer and the reference layer. A first void is defined in the reference layer between projections of the pair of differential signal lines. Two second voids are defined in the reference layer at opposite sides of the projections of the pair of differential signal lines.
Abstract:
A printed circuit board (PCB) includes first to fourth layers. A power supply is arranged on the first layer. An electronic component is arranged on the fourth layer. A first via and a second via extend through the PCB and are electrically connected to the electronic component. The PCB further includes third to seventh vias. A length of a transmission path of the current flows from the power supply to electronic component through the third via and the seventh via is almost the same as a length of a transmission path of the current flows from the power supply to the electronic component through the fourth to sixth vias.
Abstract:
A printed circuit board includes a signal layer, a dielectric layer, and a reference layer. The signal layer includes a pair of differential signal lines. The dielectric layer is sandwiched between the signal layer and the reference layer. A first void is defined in the reference layer between projections of the pair of differential signal lines. Two second voids are defined in the reference layer at opposite sides of the projections of the pair of differential signal lines.
Abstract:
An exemplary PCB includes a first reference layer, a first signal layer, and a second signal layer in that order. A first differential pair is arranged in the first signal layer in an edge-coupled structure referencing the first reference layer. A second differential pair is arranged in the second signal layer in edge-coupled structure. A first ground part and a second ground part are symmetrically arranged in the second signal layer and at opposite sides of the second differential pair. The first differential pair is arranged above the first ground part such that a projection of the first differential pair onto the second signal layer having an area coincident with the first ground part. The second differential pair references the first and second ground parts.
Abstract:
A power supply system includes a power supply, a daughterboard, and a motherboard. Output currents of power connectors of the motherboard and impedances of copper foils between every two adjacent power connectors of the motherboard are obtained via simulation. A voltage of one power connector of the motherboard is predetermined. Therefore, desired impedances of copper foils between VRM connectors and corresponding power connectors on the daughter board are determined via calculations, to make currents passing through the power connectors of the motherboard equal to each other.
Abstract:
A printed circuit board (PCB) can prevent electrostatic discharge. A number of vias are embedded in the PCB. A circular insulated member is disposed between each via and the number of vias. Each via includes a layer of metal coated on an inner wall of a corresponding insulated member and a through hole bounded by the corresponding insulated member. An acute angle between two tangents which pass through a point of intersection of two overlapped insulated members is greater than twenty degrees.
Abstract:
The present disclosure provides for many different embodiments. An exemplary method can include providing a blank mask and a design layout to be patterned on the blank mask, the design layout including a critical area; inspecting the blank mask for defects and generating a defect distribution map associated with the blank mask; mapping the defect distribution map to the design layout; performing a mask making process; and performing a mask defect repair process based on the mapping.