Abstract:
A method for regenerating an open particle separator includes at least determining at least one parameter, as a characteristic variable of a regeneration capability of the open particle separator. The at least one parameter is compared with a first threshold value. At least one portion of a comparison period during which the parameter has reached the first threshold value is determined. The portion is compared with a first minimum portion corresponding to a minimum regeneration time in the comparison time period. Measures are initiated to influence the parameter so that the parameter lies at least according to the first minimum portion and the first threshold value is reached and/or the open particle separator is regenerated. A motor vehicle having at least one open particle separator is also provided.
Abstract:
A configuration for purification of an exhaust gas flow of an internal combustion engine includes at least one exhaust gas line having an element for exhaust gas purification with a first end face and a second end face. The exhaust gas flows through the element from the first end face to the second end face. An adding device is provided downstream of the element for adding a reactant to the exhaust gas flow. The adding device is positioned at a distance of no more than 30 mm from the second end face of the element in such a way that at least part of the added reactant strikes the second end face of the element. A method for adding a reactant into an exhaust line during the operation of an internal combustion engine is also provided.
Abstract:
A method for selectively heating a reducing agent line of an SCR device during operation of an exhaust gas purification system of an internal combustion engine and a device for exhaust gas purification, include a supply tank for a reducing agent for SCR applications, a device for introducing the reducing agent into an exhaust line of an internal combustion engine and at least one reducing agent line for fluidically connecting the supply tank to the device.
Abstract:
An evaporation unit for evaporating an aqueous solution including at least one reducing agent precursor, includes at least one evaporator cavity defined by a wall made of a material containing titanium. A heat-imparting layer disposed outside the evaporator cavity is made of a material having a thermal conductivity of at least 100 W/mK (Watts per meter and Kelvin) and is connected to the evaporator cavity in a heat-conducting manner. A heating layer disposed outside the heat-imparting layer is connected in a materially integral manner to the heat-imparting layer. The evaporator unit can be controlled in a highly dynamic manner, thereby enabling a sufficiently high amount of ammonia to be produced even during rapid load changes and consequently significant increases in the concentration of nitric oxide in the exhaust gas of the internal combustion engine. A device and a motor vehicle having the evaporation unit are also provided.
Abstract:
An electrically heatable honeycomb body is formed with at least one wound stack of sheet-metal foils. A first end of the stack is connected to an electrical terminal and a second end is connected to an electrical ground. The stack has a plurality of sheet-metal foils which are in electrical contact with one another and which are at least partially structured and determine, in the direction of the structures, a height of the stack. The stack has at least one curvature with a small radius of curvature and a relatively large radius of curvature. A curvature section including the at least one curvature has at least one zone with increased electrical resistance starting from the small radius of curvature and extending over part of the height of the stack. A motor vehicle having at least one honeycomb body, is also provided.
Abstract:
A device for supplying reducing agent solution into an exhaust system, includes a reservoir for reducing agent solution and a delivery device for delivering reducing agent solution from the reservoir to a reducing agent infeed configuration. A delivery height to be overcome between the reservoir and the reducing agent infeed configuration is less than 1.5 meters and the delivery device includes a diaphragm pump. The device permits the dosed metering of reducing agent solution into an exhaust system of an internal combustion engine regardless of prevailing boundary conditions, in particular regardless of the position of the device, which is for example influenced by a position of a corresponding automobile. In particular, it is thus also possible to ensure reliable metering of reducing agent solution into the exhaust system even when the automobile or motor vehicle is traveling over grades. A corresponding exhaust system, method and utility vehicle are also provided.
Abstract:
A method for producing metal fibers includes a machining production method using at least one rotating tool. A device for producing metal fibers, a filter material having such fibers, a method for producing the material, a particle filter using such material, a motor vehicle equipped with the filter, and a fiber, are also provided.
Abstract:
A method for gluing and brazing a honeycomb structure includes at least one partially structured foil with a pitch and a wave height. The method includes the steps of choosing a mean brazing material diameter of a powder brazing material, said diameter being 15% smaller than the height of the wave; determining a minimum thickness of the glue strip according to equation; gluing at least partially structured foil within the width of the glue strip on at least part of the wave crests formed by the undulation; brazing the honeycomb structure. The invention also relates to a corresponding honeycomb structure that ensures satisfactory joint connections even when said structure is used in the exhaust systems of automobiles.
Abstract:
An exhaust gas filter for cleaning an exhaust gas of an internal combustion engine, includes at least one strip-shaped filter layer. The filter layer has at least one filter region formed of a material through which a fluid can at least partly flow, for filtering out particulates from the exhaust gas. The filter layer also has at least one contact region with a catalytically active coating, for conversion of gaseous components of the exhaust gas. A method for cleaning an exhaust gas of an internal combustion engine is also provided.
Abstract:
A tank for a reducing agent includes a tank wall having an outer side and an interior at least partially delimited by the tank wall. A sensor is disposed at the tank wall and has a first electrical contact and a second electrical contact. The first electrical contact and the second electrical contact communicate in an electrically conductive manner with the interior, extend through the tank wall from the interior to the outer side of the tank wall and are disposed at a first spacing of less than 5 cm from one another. A motor vehicle having the tank is also provided.