Abstract:
A water-cooling radiator for a computer chip is provided to lower the temperature of the computer chip. The radiator includes a body on which other elements can be fixed and providing an interface for heat exchange, an internal circulation flow path built inside the body to provide a passage required for the coolant to flow through, and a pump fixed to the side of the body near the computer chip to provide power required for the coolant circulation.
Abstract:
The invention relates to a microactuator comprising a movable structure having a symmetric axis about which the movable structure are divided into two parts which can produce the same movement but in opposite directions; two active arms built with piezoelectric material; two stationary structures to connect the two active arms at their two ends, respectively. The invention also relates to a disk drive suspension which is incorporated with the microactuator.
Abstract:
The measuring system generates a temperature difference between a heating terminal and a terminal conductive device by setting the temperature of a metal heated block at the heating terminal and the temperature of a heat dissipating water jacket at a heat dissipating terminal, and judges the thermal conductive capability of the thermal conductive device by comparing the cooling speed of the metal heating bock to obtain a relative power value according to the variation of heat quantity of the metal heated block in practical temperature reduction process. The maximum thermal conductive quantity (Qmax value) of the thermal conductive device can be rapidly obtained by parameter conversion with respect to the maximum power value. In the case of confirming the cooling curve (cooling speed) of a standard sample, the object of screening the thermal conductive efficiencies of the thermal conductive devices can be achieved by using the cooling curve.
Abstract:
An oven is provided for curing or reflowing compounds on objects, such as lead frames or other substrates. The oven comprises a heating chamber, a heating assembly mounted in thermal communication with the heating chamber to provide heat thereto, and a support assembly for supporting the object in the heating chamber for heating. The heating assembly and support assembly are configured to be movable relative to one another for controllably positioning the object at variable distances with respect to the heating assembly. Heating of the object according to a heating profile can thus be achieved by controlled heating of the object at different temperatures by positioning the object at different distances with respect to the heating assembly during the heating process although there is a single heating zone.
Abstract:
Methods for using an apurinic/apyrimidinic endonuclease, capable of cleaving both single- and double-stranded cDNA, for fragmentation and labeling of single stranded or double stranded DNA molecules are provided. Amplification methods that generate single-stranded amplified cDNA are also disclosed. In the subject methods AP sites in a population of nucleic acids are cleaved by an AP endonuclease that is active on both double and single stranded DNA. Fragments may be end labeled. In preferred embodiments APE 1 is used. The methods may be used in a variety of applications where end-labeling single or double stranded DNA is desired.
Abstract:
Methods and computer software products for identifying changes in genomic DNA copy number are disclosed. Methods for identifying homozygous deletions and genetic amplifications are disclosed. Genomic DNA is amplified generically and amplified sample is hybridized to an expression array. The expression array comprises probes to regions of genes that are expressed. The probes are complementary to genomic sequences found in mRNAs. Signal intensity is correlated to copy number. The methods may be used to detect copy number changes in cancerous tissue compared to normal tissue. The methods may be used to diagnose cancer and other diseases associated with chromosomal anomalies.
Abstract:
A system and method for an improved magnetic head arm assembly (HAA) is disclosed. The HAA includes three principal components, a head gimbal assembly (HGA), a flexible printed circuit (FPC) assembly, and an actuator coil assembly. The design allows for HAA rigidity, yet each of the components is designable and manufacturable independent of one another, in addition to other advantages over current methods.
Abstract:
The present invention relates to the amplification of nucleic acids, preferably from mRNA. A primer and promoter are added to a target sequence to be amplified and then the target is amplified in an in vitro transcription reaction and the product of this reaction is used as template for subsequent rounds of amplification. Polyadenylated control transcripts are added to the nucleic acid sample prior to the first step of amplification to monitor the efficiency of the amplification and labeling reactions.
Abstract:
Host cells comprising recombinant vectors encoding the FK-520 polyketide synthase and FK-520 modification enzymes can be used to produce the FK-520 polyketide. Recombinant DNA constructs comprising one or more FK-520 polyketide synthase domains, modules, open reading frames, and variants thereof can be used to produce recombinant polyketide synthases and a variety of different polyketides with application as pharmaceutical and veterinary products.