Abstract:
A method of making pneumatic tyres for vehicle wheels in which during building of the tyre on a toroidal support at least one step of a partial vulcanisation is introduced, the step enabling the overall production time to be reduced by lowering the overall time of the final moulding and vulcanisation step, while maintaining the features of the bead and the carcass ply/plies linked thereto as stated in the design specifications. More particularly, by building at least one carcass structure on the toroidal support and submitting the latter to a first vulcanisation step while exerting a pressure from the outside to the inside of the structure itself, an at least partly vulcanised carcass structure is obtained that is stable in its geometry and suitable for completing the tyre building. Subsequently, a second vulcanisation step accompanied by moulding of the tread band and the sidewalls allows a finished tyre in a more reduced overall period of time to be obtained.
Abstract:
A method for designing a tyre includes defining at least one profile of the tyre based on a group of predefined dimensional constraints; defining at least one additional profile of the tyre based on predefined dimensional values of structural parts of the tyre; defining, within a cross-section of the tyre, shapes of the structural parts of the tyre; and approximating each shape by filling with a respective basic component depending on a function of the respective structural part. A method for producing at least one tyre includes obtaining information from a client's processing system; supplying the information to a manufacturer's processing system; obtaining manufacturing instructions based on the information; and manufacturing the at least one tyre using the manufacturing instructions. The manufacturer's processing system is connected to a computer-controlled tyre factory via a communications link. The at least one tyre is manufactured at the computer-controlled tyre factory.
Abstract:
A tire for a wheel of a vehicle includes a casing structure, a belt structure, and a tread band. A tread band pattern includes a central zone, two intermediate zones, and two shoulder zones. Each of the zones extends between planes that are substantially parallel to an equatorial plane of the tire. Each intermediate zone includes first and second sequences of pairs of transversal grooves. The first sequence pairs are alternated with the second sequence pairs. The grooves of the two sequences are inclined relative to each other. The first sequence grooves extend from first ends, at respective axially intermediate planes, to second ends, at predetermined first distances from selected second sequence grooves. The second sequence grooves extend from third ends, at respective axially inner planes, to fourth ends, at predetermined second distances from selected first sequence grooves. Intermediate zones include a zigzag rib. Shoulder zones include additional transversal grooves.
Abstract:
An apparatus for manufacturing components for a tire being worked is provided. The apparatus includes a toroidal support for carrying the components of a tire being worked. The toroidal support has an outer surface substantially matching an inner shape of the tire. The apparatus also includes means for feeding at least one elongated element through at least one delivery member disposed adjacent to the outer surface of the toroidal support. The apparatus also includes means for circumferential distribution arranged to drive the toroidal support in rotation around a geometric axis of rotation of the toroidal support so that the at least one elongated element is circumferentially distributed on the toroidal support. The apparatus also includes means for transverse distribution arranged to give controlled relative displacements between the toroidal support and the delivery member for distributing the at least one elongated element to form a plurality of coils disposed in side-by-side relationship in order to define a tire component. The transverse distribution means operates on the toroidal support for moving the toroidal support relative to the delivery member, and the circumferential distribution means and the transverse distribution means are integrated into a robotized arm.
Abstract:
A self-supporting tyre for a vehicle wheel includes a carcass structure, a belt structure, a tread band, a pair of sidewalls, and at least one elastic stiffening insert. The carcass structure includes at least one carcass ply provided with end flaps engaged with respective annular reinforcing structures. The annular reinforcing structures are disposed in coaxial relationship with a geometric rotation axis of the tyre at positions axially spaced apart from each other. Each annular reinforcing structure includes at least one first circumferentially inextensible annular anchoring insert. The at least one elastic stiffening insert is incorporated into the carcass structure, at least at one of the sidewalls, and includes a radially internal end portion at least partly disposed in axial side-by-side relationship against the at least one first annular anchoring insert. A method of making the tyre is also disclosed.
Abstract:
A method for moulding and curing a tyre for a vehicle wheel includes building a tyre on a toroidal support, placing the tyre carried by the toroidal support into a moulding cavity, pressing an outer surface of the tyre against walls of the moulding cavity using a working fluid under pressure, and heating the working fluid. The toroidal support includes an outer surface whose shape substantially matches the tyre's inner surface. The walls of the moulding cavity conform in shape to an outer surface of the tyre when vulcanization is completed. The working fluid flows in at least one diffusion gap between the toroidal support and the tyre. The working fluid in contact with the tyre has a critical temperature lower than a vulcanization temperature and the working fluid is submitted to circulation. An apparatus for moulding and curing a tyre for a vehicle wheel is also disclosed.
Abstract:
An anti-theft device for a vehicle with tyre wheels includes an immobilization device, at least one detection control unit, and at least one sensor. The immobilization device activates an anti-theft procedure. The at least one detection control unit is connected to the immobilization device and verifies an alarm condition. The at least one sensor is associated with one or more of the tyre wheels, communicates with the at least one detection control unit, detects movement of one or more of the tyre wheels, and detects inflation pressure of one or more of the tyre wheels. A method for activating an anti-theft device for a vehicle with tyre wheels includes detecting an alarm condition from at least one of the tyre wheels, receiving the detected condition, and activating an anti-theft procedure.
Abstract:
A plant for producing types of tyres different from each other includes a manufacturing unit including a plurality of work stations, devices for transfer and movement of the tyres being produced, and a vulcanizing unit including vulcanizing moulds for the tyres being produced. Each work station is designed to assemble at least one corresponding structural component on at least one type of tyre being produced. The devices for transfer and movement operate between the work stations and provide selective movement for each of the types of tyres being produced in proximity to corresponding work stations. The plant may also include a central processing unit. The central processing unit may control the devices for transfer and movement to coordinate processing stages for each type of tyre in the manufacturing unit and in the vulcanizing unit. Additionally, the plant may include holding stations associated with at least some of the work stations.
Abstract:
A tire for vehicle wheels provided with a tread pattern includes at least one continuous central circumferential groove straddling an equatorial plane of the tire, at least two continuous lateral circumferential grooves having median planes substantially parallel to the equatorial plane of the tire, and a plurality of transverse grooves. These grooves delimit at least four circumferential rows of blocks, two central rows and two shoulder rows. Each block of the central rows is defined by a plurality of sides and at least four vertices, a pair of front vertices and a pair of rear vertices, in relation to a predetermined running direction of the tire. The blocks of the central rows include a first transverse notch having a first terminal end inside a respective block of the central rows and a first starting end communicating with the at least one central circumferential groove.
Abstract:
A tyre for a vehicle wheel includes a toroidal carcass including a central crown portion and two axially opposed sidewalls terminating in beads for mounting on a rim. Each bead includes at least one annular reinforcing core that includes a set of loops or spirals of metallic filament. The carcass is provided with a reinforcing structure including at least one carcass ply reinforced with metallic cords. Ends of the reinforcing structure are fixed to the reinforcing cores. The reinforcing structure includes a neutral profile intersecting cross-sections of fields that delimit the reinforcing cores. The profile includes a continuous curvature without points of inflection along the extension between the beads. At least one auxiliary reinforcing element is provided in at least one of the beads that partially extends within a respective field or in a radially inner portion of at least one sidewall in a position radially external to the field.