Abstract:
A color filter substrate for an in-plane switching mode liquid crystal display device includes a first rear side electrode on a first surface of a substrate and formed of a first transparent conductive material including zinc oxide (ZnO) and at least two compounds having second or fourth valence, the first rear side electrode having a first thickness; a black matrix having a lattice shape and a plurality of openings in the lattice shape, the black matrix disposed on a second surface, which is opposite to the first surface, of the substrate; a color filter layer in the plurality of openings; and an overcoat layer on the black matrix and the color filter layer.
Abstract:
The substrate for a semiconductor package includes a substrate body having a first surface and a second surface opposite to the first surface. Connection pads are formed near an edge of the first surface. Signal lines having conductive vias and first, second, and third line parts are formed. The first line parts are formed on the first surface and are connected to the connection pads and the conductive vias, which pass through the substrate body. The second line parts are formed on the first surface and connect to the conductive vias. The third line parts are formed on the second surface and connect to the conductive vias. The second and third line parts are formed to have substantially the same length. The semiconductor package utilizes the above substrate for processing data at a high speed.
Abstract:
A mobile terminal including a main body having a wireless communication module, a first display module disposed on a front surface of the main body and configured to display first information, a first input unit disposed on the front surface of the main body and configured to input first information into the mobile terminal, a second display module disposed on a rear surface of the main body and configured to display second information, and a control unit configured to control the wireless communication module, the first and second display modules, and the first input unit.
Abstract:
Systems and techniques for characterizing samples using optical techniques are described. Light may be incident on a sample in the form of a pre-defined pattern which impinges on a wafer surface, and a reflection of the pattern is detected at a detector. Information indicative of changes in the pattern after reflection may be used to determine one or more sample characteristics and/or one or more pattern characteristics, such as stress, warpage, and curvature. The light may be coherent light of a single wavelength, or may be light of multiple wavelengths, and the pattern may be generated by transmission of the light through a diffraction grating, or hologram. The light source may be incoherent or multi-wavelength, and the pattern may be generated by imaging a pattern disposed on a mask on the sample and re-imaging the pattern at the detector.
Abstract:
A layer, such as a dielectric, formed on a substrate, such as a silicon substrate, is heated by selecting a specific wavelength or energy for the material of the layer, such that photons readily pass and are absorbed by the material and then reflected from the interface of the layer and the substrate.
Abstract:
Disclosed are a multipurpose, high-functional, alkaline solution composition, preparation therefor and use thereof as a nonspecific immunostimulator. The composition comprises 1-25 parts by weight of borax (Na2B4O7.10H2O), 10−5-10−4 parts by weight of sodium thiosulfate (Na2S2O3.5H2O), 30-150 parts by weight of potassium carbonate, 30-200 parts by weight of refined sugar (C12H22O11), and 100-200 parts by weight of water, based on 100 parts by weight of sodium metasilicate (Na2SiO3.5H2O). In addition to bringing about an improvement in disease resistance, weight gain rate, crop yield, crop quality, harvest time, the composition shows nonspecific immunostimulating activities, including antibody production and immune enhancement, by activating immune cells, thereby maximizing vaccination effects on malignant viral diseases.
Abstract:
After ion implantation, thermal ashing is conducted in a high oxygen concentration at a pressure of between about 100 to about 760 Torr at below 700° C. to remove the resist. Since photoresist consists of Carbon (C), Hydrogen (H) and Oxygen (O), the products of reaction of the thermal oxidation of the photoresist include CO2 and H2O. Since the process includes a substantial amount of oxygen, the resist can be completely oxidized, thus leaving no residue or other contaminates to remain on the substrate.
Abstract translation:在离子注入之后,在低于700℃下,在约100至约760托之间的压力下以高氧浓度进行热灰化以除去抗蚀剂。 由于光致抗蚀剂由碳(C),氢(H)和氧(O)组成,光致抗蚀剂的热氧化反应的产物包括CO 2和H 2 O. 由于该方法包含大量的氧,所以抗蚀剂可以被完全氧化,因此不会留下残余物或其它污染物残留在基材上。
Abstract:
The present invention relates to a process for preparing an alkylester of fatty acid with high purity via one-step continuous process by reacting an animal fat and/or vegetable oil with a lower alcohol in the presence of alkali catalyst by passing through a continuous tubular reactor while maintaining a single-phase, removing residual lower alcohol from the reaction mixture and removing residual glycerin, catalyst, etc. by phase separation. In accordance with the present invention, an alkylester of fatty acid can be produced with a high yield of 97% or more via one-step continuous process in a continuous tubular reactor without any limitation in flow types by reacting an animal fat and/or vegetable oil with a lower alcohol in the presence of alkali catalyst and carrying out a simple separating process.