Abstract:
A graphics system may include one or more processing units for processing a current display frame, each processing unit including a plurality of parameter registers for storing parameter settings used in processing the current display frame. A parameter buffer in the graphics system may store frame packets, with each frame packet containing information corresponding to parameter settings to be used for at least one display frame. A control circuit coupled to the buffer and to the one or more processing units may retrieve a top frame packet from the parameter buffer and determine if the frame packet is an internal type, i.e., intended for internal registers in a respective processing unit or if it is an external type, i.e., intended for an external register elsewhere in the graphics system. Based on the type of frame packet, the control circuit may update one or more register values accordingly.
Abstract:
In an embodiment, a display pipe is configured to composite one or more frames of images and/or video sequences to generate output frames for display. Additionally, the display pipe may be configured to compress an output frame and write the compressed frame to memory responsive to detecting static content in the output frames is detected. The display pipe may also be configured to read the compressed frame from memory for display instead of reading the frames for compositing and display. In some embodiments, the display pipe may include an idle screen detect circuit configured to monitor the operation of the display pipe and/or the output frames to detect the static content.
Abstract:
In an embodiment, a system includes hardware optimized for communication to a network display. The hardware may include a display pipe unit that is configured to composite one or more static images and one or more frames from video sequences to form frames for display by a network display. The display pipe unit may include a writeback unit configured to write the composite frames back to memory, from which the frames can be optionally encoded using video encoder hardware and packetized for transmission over a network to a network display. In an embodiment, the display pipe unit may be configured to issue interrupts to the video encoder during generation of a frame, to overlap encoding and frame generation.
Abstract:
An electronic device may include a display panel. When content of an image frame is expected to consume relatively higher amounts of power, a controller of the electronic device may operate a switch to change a power supply of the display panel to be a power management integrated circuit of the electronic device. However, when content of an image frame is expected to consume relatively less amounts of power, the controller may operate the switch to change the power supply of the display panel to be a power supply of an electronic display, such as a power supply used to power driver circuitry of the electronic display.
Abstract:
In an embodiment, a system may include one or more processors forming central processing units (CPUs) in the system, a display controller configured to display frames on a display device, a memory controller configured to control a memory, and a power management circuit. The power management circuit may be configured to establish one of a plurality of power states in the system. In a first power state, the display controller and the memory controller are powered on while the CPUs are powered off. The display controller may be configured to read a plurality of prerendered frames from the memory and display the plurality of prerendered frames at times specified for each of the plurality of prerendered frames.
Abstract:
To reduce overall power consumption for an electronic display power management integrated circuit (PMIC), one of multiple electric power converters and/or electric power regulators may be selected based on an electrical load (e.g., due to the total brightness of the content displayed) on the electronic display at a given moment. In some embodiments, the PMIC may include a less efficient heavy load converter designed with high-current handling capability and a more efficient light load (e.g., low current) converter with lower current handling capability. A controller may dynamically select between the converters depending on a present load or an expected load on the electronic display.
Abstract:
A method may include receiving, via a processor, a frame of image data, such that the frame of image data may include an active portion and an idle portion. The active portion may include data for presenting one or more images via a first display of a first electronic device. The method may also include receiving a signal from a second electronic device during the idle portion of the frame of image data, such that the second electronic device is separate from the first display. The method may then involve initiating processing of the frame of image data in response to the signal being received from the second electronic device.
Abstract:
In an embodiment, an integrated circuit includes one or more GPIO pins coupled to a GPIO block in the integrated circuit. At least a first GPIO pin may include corresponding logic circuitry that may be programmed to apply one or more requirements to changes of the digital value received on the first GPIO pin before the change is forwarded to a destination within the integrated circuit. That is, if the requirements are not met for a given change, the logic circuitry may suppress the given change so that it is not provided to other circuits internal to the integrated circuit (e.g. the destination circuit that receives communication via the GPIO pins). The one or more requirements may be a form of hysteresis, for example.
Abstract:
A method may include receiving, via a processor, a frame of image data, such that the frame of image data may include an active portion and an idle portion. The active portion may include data for presenting one or more images via a first display of a first electronic device. The method may also include receiving a signal from a second electronic device during the idle portion of the frame of image data, such that the second electronic device is separate from the first display. The method may then involve initiating processing of the frame of image data in response to the signal being received from the second electronic device.
Abstract:
In an embodiment, a system may include one or more processors forming central processing units (CPUs) in the system, a display controller configured to display frames on a display device, a memory controller configured to control a memory, and a power management circuit. The power management circuit may be configured to establish one of a plurality of power states in the system. In a first power state, the display controller and the memory controller are powered on while the CPUs are powered off. The display controller may be configured to read a plurality of prerendered frames from the memory and display the plurality of prerendered frames at times specified for each of the plurality of prerendered frames.