Abstract:
A logging system includes an event receiver and a storage manager. The receiver receives log data, processes it, and outputs a column-based data “chunk.” The manager receives and stores chunks. The receiver includes buffers that store events and a metadata structure that stores metadata about the contents of the buffers. Each buffer is associated with a particular event field and includes values from that field from one or more events. The metadata includes, for each “field of interest,” a minimum value and a maximum value that reflect the range of values of that field over all of the events in the buffers. A chunk is generated for each buffer and includes the metadata structure and a compressed version of the buffer contents. The metadata structure acts as a search index when querying event data. The logging system can be used in conjunction with a security information/event management (SIEM) system.
Abstract:
A method for forming one or more FinFET devices includes forming a source region and a drain region in an oxide layer, where the oxide layer is disposed on a substrate, and etching the oxide layer between the source region and the drain region to form a group of oxide walls and channels for a first device. The method further includes depositing a connector material over the oxide walls and channels for the first device, forming a gate mask for the first device, removing the connector material from the channels, depositing channel material in the channels for the first device, forming a gate dielectric for first device over the channels, depositing a gate material over the gate dielectric for the first device, and patterning and etching the gate material to form at least one gate electrode for the first device.
Abstract:
Ionic interactions are monitored to detect hybridization. The measurement may be done measuring the potential change in the solution with the ion sensitive electrode (which may be the conducting polymer (e.g., polyaniline) itself), without applying any external energy during the binding. The double helix formation during the complimentary hybridization makes this electrode act as an ion selective electrode—the nucleotide hydrogen bonding is specific and thus monitoring the ionic phosphate group addition becomes selective. Polyaniline on the surface of nylon film forms a positively charged polymer film. Thiol linkage can be utilized for polyaniline modification and thiol-modified single strand oligonucleotide chains can be added to polyaniline. The sensitivity is because the double helix formation during the complimentary hybridization makes this electrode act as an ion selective electrode as the nucleotide hydrogen bonding is specific and thus monitoring the ionic phosphate group addition becomes selective.
Abstract:
A stacked chip semiconductor package may be formed in a “package in package” arrangement. The internal package may include two substrates. One substrate may have two dice stacked on each of two opposed sides and the other substrate may have two dice stacked on it as well. The two stacked substrates may be separated by molding compound and then electrically coupled to a third substrate. Thereafter, the entire assembly may be encapsulated.
Abstract:
The present invention enables the production of improved high-reliability, high-density semiconductor devices. The present invention provides the high-density semiconductor devices by decreasing the size of semiconductor device structures, such as gate channel lengths. Short-channel effects are prevented by the use of highly localized halo implant regions formed in the device channel. Highly localized halo implant regions are formed by a tilt pre-amorphization implant and a laser thermal anneal of the halo implant region.
Abstract:
A semiconductor device includes a substrate and an insulating layer on the substrate. The semiconductor device also includes a fin structure formed on the insulating layer, where the fin structure includes first and second side surfaces, a dielectric layer formed on the first and second side surfaces of the fin structure, a first gate electrode formed adjacent the dielectric layer on the first side surface of the fin structure, a second gate electrode formed adjacent the dielectric layer on the second side surface of the fin structure, and a doped structure formed on an upper surface of the fin structure in the channel region of the semiconductor device.
Abstract:
A method of forming a fin for a fin field effect transistor (FinFET) includes defining a trench in a layer of first material, where a width of an opening of the trench is substantially smaller than a thickness of the layer. The method includes growing a second material in the trench to form the fin and removing the layer of first material.
Abstract:
An event-based system and process for recording and playback of collaborative electronic presentations is presented. The present system and process includes a technique for recording collaborative electronic presentations by capturing and storing the interactions between each participant and presentation data where each interaction event is timestamped and linked to a data file comprising the presentation data. The present system and process also includes a technique for playing back the recorded collaborative electronic presentation, which involves displaying the presentation data in an order it was originally presented and reproducing the recorded interactions between each participant and the displayed presentation data at the same point in the presentation that they were originally performed, based on the aforementioned timestamps.
Abstract:
A method of fabricating an integrated circuit utilizes symmetric source/drain junctions. The process can be utilized for P-channel or N-channel metal oxide field semiconductor effect transistors (MOSFETS). The drain extension is deeper than the source extension. The source extension is more conductive than the drain extension. The transistor has reduced short channel effects and strong drive current and yet is reliable.
Abstract:
A method for forming a tri-gate semiconductor device that includes a substrate and a dielectric layer formed on the substrate includes depositing a first dielectric layer on the dielectric layer and etching the first dielectric layer to form a structure. The method further includes depositing a second dielectric layer over the structure, depositing an amorphous silicon layer over the second dielectric layer, etching the amorphous silicon layer to form amorphous silicon spacers, where the amorphous silicon spacers are disposed on opposite sides of the structure, depositing a metal layer on at least an upper surface of each of the amorphous silicon spacers, annealing the metal layer to convert the amorphous silicon spacers to crystalline silicon fin structures, removing a portion of the second dielectric layer, depositing a gate material, and etching the gate material to form three gates.