Abstract:
A system for communication using a register management array circuit is disclosed, including a processor, including a processing core, the processing core including a local core register, a register management array circuit coupled to the local core register, and a remote circuit coupled to the register management array circuit, the remote circuit including a remote register. The register management array circuit includes circuitry to cause the data in the local core register to match the data in the remote register. Methods and circuits are also disclosed.
Abstract:
Hybrid threading in a processor is described. An integrated circuit that implements hybrid threading includes a power control unit (PCU), a first functional hardware unit coupled to the PCU, and a second functional hardware unit coupled to the PCU. The first functional hardware unit and the second functional hardware unit are heterogeneous functional hardware units. The PCU is configured to monitor at least one power attribute of the first and second functional hardware units. The PCU is further configured to calculate an aggregate power value based on the monitored at least one power attribute. Upon determining that the aggregate power value is below a power threshold, the PCU is also configured to calculate a first frequency for the first functional hardware unit and a second frequency for the second functional hardware unit that results in an updated aggregate power value that is closer to the power threshold.
Abstract:
In an embodiment, a processor includes a plurality of cores including a first core. The first core includes a first plurality of accumulator logics, each accumulator logic of the first plurality of accumulator logics to store corresponding first core telemetry data. The processor also includes a power management unit (PMU) to request telemetry data from the first core and in response to receive the first core telemetry data stored in at least one accumulator logic of the first plurality of accumulator logics. Other embodiments are described and claimed.
Abstract:
In an embodiment, a processor includes a first domain to operate according to a first clock. The first domain includes a write source, a payload bubble generator first in first out buffer (payload BGF) to store data packets, and write credit logic to maintain a count of write credits. The processor also includes a second domain to operate according to a second clock. When the write source has a data packet to be stored while the second clock is shut down, the write source is to write the data packet to the payload BGF responsive to the count of write credits being at least one, and after the second clock is restarted the second domain is to read the data packet from the payload BGF. Other embodiments are described and claimed.
Abstract:
A method and apparatus for performing current control for an integrated circuit are described. In one embodiment the apparatus comprises core logic coupled to receive a first current; a clock generator to generate a first clock signal; and a closed loop current controller coupled to the clock generator and coupled to provide a second clock signal to the core logic based on the first clock signal, the current controller to control an amount of the first current received by the core logic by changing the first clock signal to generate the second clock signal.
Abstract:
In an embodiment, a processor includes a core to execute instructions, where the core includes a clock generation logic to receive and distribute a first clock signal to a plurality of units of the core, a restriction logic to receive a restriction command and to reduce delivery of the first clock signal to at least one of the plurality of units. The restriction logic may cause the first clock signal to be distributed to the plurality of units at a lower frequency than a frequency of the first clock signal. Other embodiments are described and claimed.
Abstract:
In an embodiment, a processor has a core to execute instructions which includes a first cache memory, a clock generation logic to receive and distribute a first clock signal to a plurality of units of the core, and a core activity monitor logic to monitor activity of the core and, responsive to a miss in the first cache memory, to send a first restriction command to cause the clock generation logic to reduce delivery of the first clock signal to at least one of the units to a first frequency less than a frequency of the first clock signal. Other embodiments are described and claimed.
Abstract:
A method is described that includes reading a cache tag and the cache tag's corresponding ECC from storage circuitry of a cache. The method also includes generating an ECC for a search tag. The method also includes calculating a hamming distance between a) the cache tag and its corresponding ECC and b) the search tag and its corresponding ECC. The method also includes determining if the cache tag matches the search tag by determining if said hamming distance is two or less.