Abstract:
A mechanism is provided for a spin torque transfer random access memory device. A tunnel barrier is disposed on a reference layer, and a free layer is disposed on the tunnel barrier. The free layer includes an iron layer as a top part of the free layer. A metal oxide layer is disposed on the iron layer, and a cap layer is disposed on the metal oxide layer.
Abstract:
A thermal spin torque transfer magnetoresistive random access memory (MRAM) apparatus includes a magnetic tunnel junction and a tunnel junction programming circuit. The magnetic tunnel junction includes a reference layer having a fixed magnetic polarity, a tunnel barrier layer, and a free layer on an opposite side of the tunnel barrier layer from the reference layer. The free layer includes a first layer having a first Curie temperature and a second layer having a second Curie temperature different from the first Curie temperature. The tunnel junction programming circuit is configured to apply a current through the magnetic tunnel junction to generate a write temperature in the magnetic tunnel junction and to write to the free layer of the magnetic tunnel junction.
Abstract:
Embodiments of the invention are directed to a magnetic tunnel junction (MTJ) storage element that includes a reference layer, a tunnel barrier and a free layer on an opposite side of the tunnel barrier layer from the reference layer. The reference layer has a fixed magnetization direction. The free layer includes a first region, a second region and a third region. The third region is formed from a third material that is configured to magnetically couple the first region and the second region. The first region is formed from a first material having a first predetermined magnetic moment, and the second region is formed from a second material having a second predetermined magnetic moment. The first predetermined magnetic moment is lower that the second predetermined magnetic moment.
Abstract:
A memory device including a pedestal structure containing a cobalt aluminum layer and a magnesium-aluminum-oxide containing base layer both of which have a (001) crystal orientation is provided. The memory device further includes a magnetic tunnel junction (MTJ) pillar containing an ordered alloy forming an interface with the cobalt aluminum alloy layer. The use of the structural and textural engineered pedestal structure provides improved control of resistance, as well as improved magnetic properties such as higher tunnel magnetoresistance (TMR) and higher perpendicular magnetic anisotropy (PMA), and closer distribution of the ordered alloy.
Abstract:
A modified double magnetic tunnel junction (mDMTJ) structure is provided which includes a narrow base and the use of a spin diffusion layer (i.e., non-magnetic, spin-conducting metallic layer) which gives a low resistance-area product (RA) for the tunnel barrier layer that forms an interface with the spin diffusion layer.
Abstract:
A memory structure, i.e., magnetoresistive random access memory (MRAM) structure, is provided that includes a seeding area including at least a tunnel barrier seed layer located beneath a chemical templating layer that is wider than the magnetic tunnel junction (MTJ) structure that is located on the chemical templating layer. Redeposited metallic material is located on at least a sidewall of the tunnel barrier seed layer of the seeding area so as to shunt that area of the structure. The memory structure has reduced resistance with minimal tunnel magnetoresistance (TMR) loss penalty.
Abstract:
A multilayered magnetic free layer structure is provided that includes a first magnetic free layer and a second magnetic free layer separated by a non-magnetic layer in which the first magnetic free layer is composed of an ordered magnetic alloy. The ordered magnetic alloy provides a first magnetic free layer that has low moment, but is strongly magnetic. The use of such an ordered magnetic alloy first magnetic free layer in a multilayered magnetic free layer structure substantially reduces the switching current needed to reorient the magnetization of the two magnetic free layers.
Abstract:
A modified double magnetic tunnel junction structure is provided which includes an amorphous spin diffusion layer (i.e., an amorphous non-magnetic, spin-conducting metallic layer) sandwiched between a magnetic free layer and a first tunnel barrier layer; the first tunnel barrier layer contacts a first magnetic reference layer. A second tunnel barrier layer is located on the magnetic free layer and a second magnetic reference layer is located on the second tunnel barrier layer. Such a modified double magnetic tunnel junction structure exhibits efficient switching (at a low current) and speedy readout (high tunnel magnetoresistance).
Abstract:
A modified double magnetic tunnel junction (mDMTJ) structure is provided which includes a narrow base and the use of a spin diffusion layer (i.e., non-magnetic, spin-conducting metallic layer) which gives a low resistance-area product (RA) for the tunnel barrier layer that forms an interface with the spin diffusion layer.
Abstract:
A bottom pinned magnetic tunnel junction (MTJ) stack having improved switching performance is provided which can be used as a component/element of a spin-transfer torque magnetoresistive random access memory (STT MRAM) device. The improved switching performance which, in turn, can reduce write errors and improve write voltage distributions, is obtained by inserting at least one heavy metal-containing layer into the magnetic free layer and/or by forming a heavy metal-containing layer on a MTJ capping layer that is located above the magnetic free layer.