Abstract:
Field Effect Transistors (FETs), Integrated Circuit (IC) chips including the FETs, and a method of forming the FETs and IC. FET locations and adjacent source/drain regions are defined on a semiconductor wafer, e.g., a silicon on insulator (SOI) wafer. Source/drains are formed in source/drains regions. A stopping layer is formed on source/drains. Contact spacers are formed above gates. Source/drain contacts are formed to the stopping layer, e.g., after converting the stopping layer to silicide. The contact spacers separate source/drain contacts from each other.
Abstract:
A method of fabricating an electronic device includes the following steps. A SOI wafer is provided having a SOI layer over a BOX. An oxide layer is formed over the SOI layer. At least one first set and at least one second set of fins are patterned in the SOI layer and the oxide layer. A conformal gate dielectric layer is selectively formed on a portion of each of the first set of fins that serves as a channel region of a transistor device. A first metal gate stack is formed on the conformal gate dielectric layer over the portion of each of the first set of fins that serves as the channel region of the transistor device. A second metal gate stack is formed on a portion of each of the second set of fins that serves as a channel region of a diode device.
Abstract:
A method of forming a gate structure for a semiconductor device that includes forming a non-stoichiometric high-k gate dielectric layer on a semiconductor substrate, wherein an oxide containing interfacial layer can be present between the non-stoichiometric high-k gate dielectric layer and the semiconductor substrate. At least one gate conductor layer may be formed on the non-stoichiometric high-k gate dielectric layer. The at least one gate conductor layer comprises a boron semiconductor alloy layer. An anneal process is applied, wherein during the anneal process the non-stoichiometric high-k gate dielectric layer removes oxide material from the oxide containing interfacial layer. The oxide containing interfacial layer is thinned by removing the oxide material during the anneal process.
Abstract:
A post-planarization recess etch process is employed in combination with a replacement gate scheme to enable formation of multi-directional wiring in gate electrode lines. After formation of disposable gate structures and a planarized dielectric layer, a trench extending between two disposable gate structures are formed by a combination of lithographic methods and an anisotropic etch. End portions of the trench overlap with the two disposable gate structures. After removal of the disposable gate structures, replacement gate structures are formed in gate cavities and the trench simultaneously. A contiguous gate level structure can be formed which include portions that extend along different horizontal directions.
Abstract:
A photo-patternable dielectric material is provided to a structure which includes a substrate having at least one gate structure. The photo-patternable dielectric material is then patterned forming a plurality of sacrificial contact structures adjacent the at least one gate structure. A planarized middle-of-the-line dielectric material is then provided in which an uppermost surface of each of the sacrificial contact structures is exposed. Each of the exposed sacrificial contact structures is then removed providing contact openings within the planarized middle-of-the-line dielectric material. A conductive metal-containing material is formed within each contact opening.
Abstract:
At least one gate structure having a first spacer located on a vertical sidewall thereof is provided on an uppermost surface of a semiconductor substrate. Exposed portions of the semiconductor substrate are then removed utilizing the at least one gate structure and first spacer as an etch mask. A sacrificial replacement material is formed on each recessed surface of the semiconductor substrate. Next, a second spacer is formed contacting the first spacer. Source/drain trenches are then provided by removing exposed portions of the sacrificial replacement material and an underlying portion of the semiconductor substrate. Remaining sacrificial replacement material located beneath the second spacer is removed providing an opening beneath the second spacer. A doped semiconductor material is formed within the source/drain trenches and the opening.
Abstract:
A method of forming a semiconductor device that includes forming a high-k gate dielectric layer on a semiconductor substrate, wherein an oxide containing interfacial layer can be present between the high-k gate dielectric layer and the semiconductor substrate. A scavenging metal stack may be formed on the high-k gate dielectric layer. An annealing process may be applied to the scavenging metal stack during which the scavenging metal stack removes oxide material from the oxide containing interfacial layer, wherein the oxide containing interfacial layer is thinned by removing of the oxide material. A gate conductor layer is formed on the high-k gate dielectric layer. The gate conductor layer and the high-k gate dielectric layer are then patterned to provide a gate structure. A source region and a drain region are then formed on opposing sides of the gate structure.
Abstract:
A method of fabricating an electronic device includes the following steps. A SOI wafer is provided having a SOI layer over a BOX. An oxide layer is formed over the SOI layer. At least one first set and at least one second set of fins are patterned in the SOI layer and the oxide layer. A conformal gate dielectric layer is selectively formed on a portion of each of the first set of fins that serves as a channel region of a transistor device. A first metal gate stack is formed on the conformal gate dielectric layer over the portion of each of the first set of fins that serves as the channel region of the transistor device. A second metal gate stack is formed on a portion of each of the second set of fins that serves as a channel region of a diode device.
Abstract:
Systems, computer-implemented methods, and/or computer program products that can facilitate target qubit decoupling in an echoed cross-resonance gate are provided. According to an embodiment, a computer-implemented method can comprise receiving, by a system operatively coupled to a processor, both a cross-resonance pulse and a decoupling pulse at a target qubit. The cross-resonance pulse propagates to the target qubit via a control qubit. The computer-implemented method can further comprise receiving, by the system, a state inversion pulse at the control qubit. The computer-implemented method can further comprise receiving, by the system, both a phase-inverted cross-resonance pulse and a phase-inverted decoupling pulse at the target qubit. The phase-inverted cross-resonance pulse propagates to the target qubit via the control qubit.
Abstract:
Techniques regarding resetting highly excited qubits are provided. For example, one or more embodiments described herein can comprise a system, which can comprise a memory that can store computer executable components. The system can also comprise a processor, operably coupled to the memory, and that can execute the computer executable components stored in the memory. The computer executable components can comprise a reset component that can de-excite a qubit system to a target state by transitioning a population of a first excited state of the qubit system to a ground state and by applying a signal to the qubit system that transitions a population of a second excited state to the first excited state.