Abstract:
A remote center manipulator for use in minimally invasive robotic surgery includes a base link held stationary relative to a patient, an instrument holder, and a linkage coupling the instrument holder to the base link. First and second links of the linkage are coupled to limit motion of the second link to rotation about a first axis intersecting a remote center of manipulation. A parallelogram linkage portion of the linkage pitches the instrument holder around a second axis that intersects the remote center of manipulation. The second axis is not coincident with the first axis. Third and fourth links of the linkage are coupled to limit motion of the fourth link to rotation about a third axis intersecting the remote center of manipulation. The third axis is not coincident with either of the first and second axes. Various combinations of hardware-constrained remote center of motion robotic manipulators with redundant mechanical degrees of freedom are disclosed.
Abstract:
A medical robotic system includes an entry guide with surgical tools and a camera extending out of its distal end. To supplement the view provided by an image captured by the camera, an auxiliary view including articulatable arms of the surgical tools and/or camera is generated from sensed or otherwise determined information about their positions and orientations are displayed along with indications of range of motion limitations on a display screen from the perspective of a specified viewing point.
Abstract:
An entry guide tube and cannula assembly, a surgical system including the assembly, and a method of surgical instrument insertion are provided. In one embodiment, the assembly includes a cannula having a proximal portion that operably couples to an accessory clamp of a manipulator arm, and a distal tubular member coupled to the proximal portion, the tubular member having an opening for passage of at least one instrument shaft. The assembly also includes an entry guide tube rotatably coupled to the proximal portion of the cannula, the entry guide tube including a plurality of channels for passage of a plurality of instrument shafts, wherein the entry guide tube is rotatably driven relative to the proximal portion of the cannula by rotation of at least one instrument shaft about a longitudinal axis of the entry guide tube.
Abstract:
A robotic system has a plurality of user selectable operating modes. To select one of the operating modes, a user performs a distinguishing action which uniquely identifies a desired operating mode among the plurality of user selectable operating modes. A method implemented by a processor in the robotic system identifies the distinguishing action and places the robotic system in the user selected operating mode.
Abstract:
A computer-assisted medical system includes robotic manipulators, a user input system operable to generate signals to control the manipulators, and a controller configured to execute instructions to perform operations. A portion of the user input system is movable relative to the plurality of manipulators. The operations include, in a pairing mode, associating a first manipulator of the plurality of manipulators with the portion of the user input system based on movement of the portion of the user input system relative to the first manipulator, and, in a following mode, controlling motion of the first manipulator in accordance with an indication generated by the user input system in response to operation of the portion of the user input system by a user.
Abstract:
A medical system comprises an entry guide, a display, and a processor. The processor may be configured to receive state information for an articulatable image capture device controllably extendable out of a distal end of the entry guide. The processor may be configured to generate a view including a graphical representation of a distal end portion of the articulatable image capture device as determined from the received state information and a graphical representation of a field of view of the articulatable image capture device extending distally from the distal end portion of the articulatable image capture device. The processor may also cause the view to be displayed on the display.
Abstract:
A computer-assisted system can comprise an instrument configured to be at least partially inserted through a body wall from an external workspace to an internal workspace within a body; and a controller configured to generate a first three-dimensional model of the internal workspace in which a first portion of the instrument is inserted during performance of a medical procedure using the instrument, generate a second three-dimensional model of an external workspace in which a second portion of the instrument is located during the performance of the medical procedure, based on the first three-dimensional model and the second three-dimensional model, determine an internal geometry within the internal workspace defining a reachable volume within the internal workspace within which the instrument may be positioned, and provide output related to performance of the medical procedure based on the determined internal geometry.
Abstract:
An instrument system includes an instrument, a drive system, and a controller operably connected to a first drive mechanism and a second drive mechanism of the drive system. The controller is configured to operate the first drive mechanism and the second drive mechanism drive a flexible tensioning member of the instrument to cause movement of an end effector of the instrument while maintaining a tension applied to the flexible tensioning member of the instrument in a tension range.
Abstract:
A computer-assisted system includes an instrument manipulator assembly including a preload assembly and a motor, an insertion assembly configured to control a position of the instrument manipulator assembly, and a motor controller coupled to the preload assembly. The motor controller is configured to actuate the preload assembly to control an amount of preload applied by the preload assembly to the motor and actuate the preload assembly to apply a low preload in response to detecting that a sterile adapter is mounted to the instrument manipulator assembly.
Abstract:
A manipulator for a surgical instrument may comprise an instrument holder coupled with the surgical instrument and rotatable in a plane that passes through a remote center. The manipulator may also comprise a linkage assembly coupled to the instrument holder to limit motion of the instrument holder to rotation about an axis that intersects the remote center. The linkage assembly may comprise a first linkage arm comprising first and second pulleys. Each pulley may comprise first and second drive tracks which are substantially co-planar. The first linkage arm may also comprise a first drive member section extending between the first drive tracks of the pulleys and a second drive member section extending between the second drive tracks of the pulleys. The first drive member section may be wound around the first pulley in a first direction and the second drive member section may be wound around the first pulley in an opposite direction.