Abstract:
Dynamic transmission of non-zero power channel state information resource signals and interference measurement resources is described. Such dynamic transmission reduces or eliminates a need to buffer and store channel and interference measurements The described approach also reduces the overhead due to transmission of those resources and enables flexible time-domain channel state information requests.
Abstract:
Technology for adjusting a receiver timing of a wireless device in a Coordinated MultiPoint (CoMP) system is disclosed. One method can include the wireless device receiving a plurality of node specific reference signals (RSs) from a plurality of cooperating nodes in a coordination set of the CoMP system. The coordination set includes at least two cooperating nodes. The wireless device can estimate a composite received RS timing from a plurality of received RS timings generated from the plurality of node specific RSs. The received RS timings represent timings from the at least two cooperating nodes. The wireless device can adjust the receiver timing based on the composite received RS timing. A node specific RS can include a channel-state information reference signal (CSI-RS).
Abstract:
An eNodeB (eNB), user equipment (UE) and method for operating in enhanced coverage (EC) modes are generally described. The UE may receive one or more physical broadcast channel (PBCH) signals, dependent on whether the UE is in a normal coverage mode or in one of the EC modes. The PBCH signal may be combined to form a combined PBCH signal, when the UE is in an EC mode, and decoded to determine one of a plurality of sets of resource regions associated different EC modes for communication with the eNB. The signal may be scrambled using a Radio Network Temporary Identifier (RNTI) dependent on at least one of a signal type of the control signal and the EC mode. Paging and the system information block (SIB) signals in a Physical Downlink Shared Channel (PDSCH) may be decoded without decoding a physical downlink control channel (PDCCH) signal associated with the PDSCH.
Abstract:
In embodiments, an eNodeB (eNB) may include a sequence generator to identify an initialization parameter for a pseudo-random sequence. The initialization parameter may have a periodicity greater than one radio frame of a radio signal. The sequence generator may then generated a pseudo-random sequence based at least in part on the initialization parameter, and then generate a reference signal based on the pseudo-random sequence. The eNB may further include a transmitter that is coupled with the sequence generator and is to transmit the reference signal in a subframe of the radio signal.
Abstract:
Device, system, and method of multi-user multi-input-multi-output (MIMO) wireless communication. In some embodiments, a wireless communication device (102) may be capable of receiving a plurality of channel feedback transmissions from a plurality of user devices (104, 106, 108) respectively, wherein a channel feedback transmission from a user device of the user devices includes partial information relating to a MIMO channel matrix between the wireless communication unit and the user device; and transmitting a multi-user MIMO transmission to the plurality of user devices according to a MIMO beamforming scheme, wherein the MIMO beamforming scheme is based on the plurality of channel feedback transmissions.
Abstract:
Communication signals using a first and a second frequency band in a wireless network is described herein. The first frequency band may be associated with a first beamwidth while the second frequency band may be associated with a second beamwidth. An apparatus may include receiver circuitry arranged to receive first signals in a first frequency band associated with a first beamwidth and second signals in a second frequency band associated with a second beamwidth, the first signals comprising a frame synchronization parameter and the second signals comprising frame alignment signals. The apparatus may further include processor circuitry coupled to the receiver circuitry, the processor circuitry arranged to activate or deactivate the receiver circuitry to receive the frame alignment signals based on the frame synchronization parameter. Other embodiments may be described and/or claimed.
Abstract:
Technology for spatial domain beamforming coordination at a low power node (LPN) in a heterogeneous network (HetNet) is disclosed. One method can include the LPN collecting spatial feedback information of macro node interference from a plurality of wireless devices in a LPN cell. The LPN can compile the spatial feedback information into a spatial feedback report. The LPN can send the spatial feedback report from the LPN to a macro node for calculating a beamforming vector to reduce the macro node interference for the plurality of wireless devices in the LPN cell.
Abstract:
Some demonstrative embodiments include apparatuses, systems and/or methods of wireless backhaul and access communication via a common antenna array. For example, an apparatus may include a wireless communication unit to control an antenna array to form one or more first beams for communicating over one or more access links and to form one or more second beams for communicating over one or more backhaul links, the access links including wireless communication links between a wireless communication node and one or more mobile devices, and the backhaul links including wireless communication links between the wireless node and one or more other wireless communication nodes.
Abstract:
A user equipment (UE) for time division duplex (TDD) communication through a wireless communication channel has a receiver to receive a channel state information reference signal (CSI-RS) subframe configuration value, a CSI-RS configuration value, and a CSI-RS; and circuitry to determine a subframe index corresponding to a temporal position of a special subframe including the CSI-RS; determine a CSI-RS pattern of one or more orthogonal frequency division modulation (OFDM) resource elements carrying the CSI-RS, the pattern being from among a group of CSI-RS patterns that include OF DM resource elements in OFDM symbols corresponding to a physical downlink control channel (PDCCH) region of a legacy LTE wireless communication channel; control the receiver to receive the special subframe carrying the CSI-RS during the temporal position and at the one or more OFDM resource elements of the CSI-RS pattern; and measure the wireless communication channel based on the CSI-RS.
Abstract:
Techniques for a precoding scheme for wireless communications are described. A method and apparatus may comprise a first device for a communications system to determine a beamforming structure for a closed loop transmit beamforming scheme using channel information, one or more scaling factors and one or more integers to represent a complex vector. The beamforming structure may include a codeword, a codebook and a codeword index. Other embodiments are described and claimed.