摘要:
The invention provides a method for manufacturing a semiconductor device by which product performance and working efficiency can be improved while increasing a capacitor area of cross-point FeRAM. By using a first mask formed on a lower electrode layer forming film, a lower electrode is formed and processed and the lower electrode 2A can be exposed on a first insulating layer. By using a second mask formed on an upper electrode supporting layer forming film, a ferroelectric layer and an upper electrode supporting layer can be formed and processed and the upper electrode supporting layer can be exposed on a second insulating layer.
摘要:
Insulating films 34 through 38 (of which insulating films 34, 36, 38 are silicon nitride films and insulating films 35, 38 are silicon oxide films) are sequentially formed on the wires 33 of the fourth wiring layer and groove pattern 40 is transferred into the insulating film 38 by means of photolithography. An anti-reflection film 41 is formed to fill the grooves 40 of the insulating film 38 and then a resist film 42 carrying a hole pattern 43 is formed. The films are subjected to an etching operation in the presence of the resist film 42 to transfer the hole pattern into the insulating films 38, 37, 36 and part of the insulating film 35. Subsequently, the resist film 42 and the anti-reflection film 41 are removed and the groove pattern 40 and the hole pattern 43 are transferred respectively into the insulating film 37 and the insulating film 35 by using the insulating film 38 as mask.
摘要:
Insulating films 34 through 38 (of which insulating films 34, 36, 38 are silicon nitride films and insulating films 35, 38 are silicon oxide films) are sequentially formed on the wires 33 of the fourth wiring layer and groove pattern 40 is transferred into the insulating film 38 by means of photolithography. An anti-reflection film 41 is formed to fill the grooves 40 of the insulating film 38 and then a resist film 42 carrying a hole pattern 43 is formed. The films are subjected to an etching operation in the presence of the resist film 42 to transfer the hole pattern into the insulating films 38, 37, 36 and part of the insulating film 35. Subsequently, the resist film 42 and the anti-reflection film 41 are removed and the groove pattern 40 and the hole pattern 43 are transferred respectively into the insulating film 37 and the insulating film 35 by using the insulating film 38 as mask.
摘要:
The new structure of a memory cell which enables avoiding the problem of a step without increasing the number of processes, the structure of a semiconductor integrated circuit in which a common part of the same substrate in a manufacturing process is increased and the structure of the semiconductor integrated circuit which allows measures for environment obstacles without increasing the number of processes are disclosed. Memory cell structure in which a capacitor is formed in the uppermost layer of plural metal wiring layers by connecting the storage node of the capacitor to a diffusion layer via plugs and pads is adopted. It is desirable that a dielectric film formed in a metal wiring layer under the uppermost layer and a supplementary capacitor composed of a storage node and a plate electrode are connected to the capacitor. It is also desirable that the plate electrode of the capacitor covers the chip.
摘要:
A implantation step of a dopant ion for forming source and drain regions (S and D) is divided into one implantation of a dopant ion for forming a p/n junction with a well region (3), and one implantation of a dopant ion that does not influence a position of the p/n junction between the source and drain regions (S and D) and the well region with a shallow implantation depth and a large implantation amount. After conducting an activation heat treatment of the dopant, a surface of the source/drain region is made into cobalt silicide 12, so that the source/drain region (S and D) can have a low resistance, and a p/n junction leakage can be reduced.
摘要:
An embroidering position setting device and method of operation thereof for an embroidering sewing machine are described. The embroidering sewing machine is capable of storing pattern data in a memory for a plurality of embroidery patterns which can be selectively read out to operate a stitch forming device to form the stitches of a selected pattern or patterns on a cloth to be stitched. An embroidering frame has a cloth extended thereon to be embroidered and is connected to an X-Y drive mechanism, said cloth having a mark located at an optional position for representing a reference embroidering position of the cloth. Jog keys are selectively operated to operate said X-Y drive mechanism thereby to shift said embroidering frame so that said reference embroidering position mark of the cloth may be located at the position under said machine needle in vertical alignment therewith. The position register key is operated to store said position of the reference embroidering position mark in an embroidering position memory as the reference embroidering position data. This position of the reference embroidering position mark is indicated together with crossed lines on a display which is operative in response to operation of said position register key. A pattern selecting device is then operated to select at least one of the embroidery patterns from said pattern memory, said selected embroidery pattern being stored in a memory (RAM) and being simultaneously indicated on said display with the center thereof being located at the center of said crossed lines.
摘要:
A semiconductor device and the method of fabricating the semiconductor device include a semiconductor substrate and a plurality of conductor films formed on the substrate. Each of the conductor films is made of aluminum alloy including at least one element selected from palladium and platinum and, more preferably, further including at least one element selected from lithium, beryllium, magnesium, manganese, iron, cobalt, nickel, copper, lanthanum, cerium, chromium hafnium, zirconium, cadmium, titanium, tungsten, vanadium, tantalum, and niobium, with a protective film which includes oxide of the selected one of palladium and platinum being formed on the side wall of the conductor film.