摘要:
An internal combustion engine wherein an NOx storing catalyst is arranged in an engine exhaust passage and an NOx selective reducing catalyst is arranged downstream of the NOx storing catalyst. Just before the air-fuel ratio of the exhaust gas flowing into the NOx storing catalyst is temporarily switched from lean to rich to release NOx from the NOx storing catalyst, an amount of NOx necessary for removing ammonia adsorbed on the NOx selective reducing catalyst is fed to the NOx selective reducing catalyst under a lean air-fuel ratio.
摘要:
Engine air-fuel ratio controlling means is provided to control an exhaust air-fuel ratio that is the ratio between the air contained in the exhaust gas discharged from the engine and the fuel element contained in the same exhaust gas and acting as a reducing agent at a NOx catalyst by controlling the air-fuel ratio of the gas combusted in the engine. Fuel adding means is provided upstream of the NOx catalyst in an exhaust passage to add fuel into the exhaust gas. During the SOx poisoning recovery control, when developing a state enabling SOx reduction reactions, the exhaust gas air-fuel ratio of the exhaust gas discharged from the engine and the amount of fuel added from the fuel adding means are controlled to minimize the sum of the amount of fuel injected in the engine and the amount of fuel added from the fuel adding means.
摘要:
In an internal combustion engine, an SOX trap catalyst (13) which traps SOX contained in the exhaust gas is arranged upstream of an NOX storing catalyst (15) in an engine exhaust passage. When the NOX storing catalyst (15) should release NOX, auxiliary fuel is injected into a combustion chamber (2) at a combustible timing after the completion of injection of fuel into the combustion chamber (2) for generating the engine output. At this time, the auxiliary fuel is injected so that the air-fuel ratio A/F of the combustion gas in the combustion chamber (2) does not become below a minimum allowable air-fuel ratio M where SOX trapped at the SOX trap catalyst (13) will not be released.
摘要:
An exhaust purification system of an internal combustion engine comprising an NOX holding material arranged in an engine exhaust passage, having a catalyst metal containing silver, holding NOX contained in the exhaust gas in the form of silver nitrate by the catalyst metal when an air-fuel ratio of inflowing exhaust gas is lean, and releasing the held NOX if the air-fuel ratio of the inflowing exhaust gas becomes a stoichiometric air-fuel ratio or rich. The NOX holding material has a scatter temperature at which catalyst metal scatters in the form of silver nitrate if the temperature rises. When it is time to perform control raising the temperature of the NO holding material to the scatter temperature or above, the NOX held in the NOX holding material is released by making the air-fuel ratio of the exhaust gas flowing into the NO holding material the stoichiometric air-fuel ratio or rich.
摘要翻译:一种内燃机的排气净化系统,其包括设置在发动机排气通路中的NO x保持材料,具有含有银的催化剂金属,当空气燃料时,通过催化剂金属将含有硝酸银形式的废气中包含的NO x 流入废气的比例是稀的,如果流入的废气的空燃比变成理论空燃比,则释放保持的NOX。 如果温度升高,NO x保持材料具有散射温度,催化剂金属以硝酸银的形式散射。 当控制将NO保持材料的温度提高到散射温度以上时,通过使排气的空燃比流入NO保持材料而释放保持在NO X保持材料中的NOX 理论空燃比或浓度。
摘要:
Engine air-fuel ratio controlling means is provided to control an exhaust air-fuel ratio that is the ratio between the air contained in the exhaust gas discharged from the engine and the fuel element contained in the same exhaust gas and acting as a reducing agent at a NOx catalyst by controlling the air-fuel ratio of the gas combusted in the engine. Fuel adding means is provided upstream of the NOx catalyst in an exhaust passage to add fuel into the exhaust gas. During the SOx poisoning recovery control, when developing a state enabling SOx reduction reactions, the exhaust gas air-fuel ratio of the exhaust gas discharged from the engine and the amount of fuel added from the fuel adding means are controlled to minimize the sum of the amount of fuel injected in the engine and the amount of fuel added from the fuel adding means.
摘要:
There are provided a NOx storage reduction catalyst which is provided in an exhaust passage for an engine, and a sulfur concentration sensor which can detect a total concentration of SOx and H2S in exhaust gas that has passed through the NOx catalyst, and a concentration of SOx in the exhaust gas. An operating state of the engine is controlled such that SOx is released from the NOx catalyst (sulfur poisoning recovery process). When a concentration of the hydrogen sulfide obtained based on the total concentration and the concentration of SOx that are detected by the sulfur concentration sensor during the sulfur poisoning recovery process exceeds a permissible limit, an operating state of the engine is controlled such that the sulfur oxide is released from the NOx catalyst, an amount of the released sulfur oxide is in a predetermined range, and the concentration of the hydrogen sulfide is reduced.
摘要:
There are provided a NOx storage reduction catalyst which is provided in an exhaust passage for an internal combustion engine, and concentration detection means whose detection state can be changed between a first detection state in which a total concentration of sulfur oxide and hydrogen sulfide in exhaust gas that has passed through the NOx catalyst is detected, and a second detection state in which a concentration of the sulfur oxide in the exhaust gas is detected. An operating state of the internal combustion engine is controlled such that the sulfur oxide is released from the NOx catalyst (sulfur poisoning recovery process). The detection state of the concentration detection means is alternately changed between the first detection state and the second detection state after the concentration detection means which is caused to remain in the second detection state detects release of the sulfur oxide from the NOx catalyst during the sulfur poisoning recovery process, whereby the concentration of the sulfur oxide and a concentration of the hydrogen sulfide are obtained.
摘要:
An engine comprising an exhaust passage having therein a NO.sub.x absorbent which absorbs the NO.sub.x when the air-fuel ratio of the exhaust gas flowing into the NO.sub.x absorbent is lean and releases the absorbed NO.sub.x when the air-fuel ratio of the exhaust gas flowing into the NO.sub.x absorbent becomes the stoichiometric air-fuel ratio or rich. When the air-fuel ratio of the air-fuel mixture should be changed over from lean to the stoichiometric air-fuel ratio, the air-fuel ratio of the air-fuel mixture is temporarily made rich and is then made the stoichiometric air-fuel ratio.
摘要:
A temperature sensor includes temperature detecting means and at least one of a catalyst and an adsorbent applied to the surface of the temperature detecting means. At least one of the catalyst and the adsorbent catalyzes an exothermic reaction of a reactant in gas on the temperature detecting means. A temperature that is increased by the exothermic reaction is detected by the temperature detecting means. The catalytic efficiency for the exothermic reaction of at least one of the catalyst and the adsorbent is reduced by sulfur poisoning. The temperature sensor is disposed upstream of an exhaust purification system. Accordingly, it is determined that the temperature sensor is subjected to sulfur poisoning if the temperature detected by the temperature sensor is below a prescribed temperature.
摘要:
An exhaust purification system of an internal combustion engine includes an NOX storage reduction catalyst device which is arranged in an engine exhaust passage. The NOX storage reduction catalyst device stores SOX simultaneously with NOX. When the stored SOX amount exceeds a predetermined allowable amount, the SOX is made to be released by SOX release control which raises the temperature of the NOX catalyst device to the SOX releasable temperature, then makes the air-fuel ratio of the exhaust gas which flows into the NOX catalyst device the stoichiometric air-fuel ratio or rich. The NOX catalyst device has a residual SOX storage amount which finally remains even if performing SOX release control depending on the temperature of the NOX catalyst device when performing SOX release control. The system uses the residual SOX storage amount of the current SOX release control as the basis to calculate the SOX release speed at each timing in the current SOX release control.