Abstract:
Integrated circuits are disclosed in which the strain properties of adjacent pFETs and nFETs are independently adjustable. The pFETs include compressive-strained SiGe on a silicon substrate, while the nFETs include tensile-strained silicon on a strain-relaxed SiGe substrate. Adjacent n-type and p-type FinFETs are separated by electrically insulating regions formed by a damascene process. During formation of the insulating regions, the SiGe substrate supporting the n-type devices is permitted to relax elastically, thereby limiting defect formation in the crystal lattice of the SiGe substrate.
Abstract:
A self-aligned SiGe FinFET device features a relaxed channel region having a high germanium concentration. Instead of first introducing germanium into the channel and then attempting to relax the resulting strained film, a relaxed channel is formed initially to accept the germanium. In this way, a presence of germanium can be established without straining or damaging the lattice. Gate structures are patterned relative to intrinsic silicon fins, to ensure that the gates are properly aligned, prior to introducing germanium into the fin lattice structure. After aligning the gate structures, the silicon fins are segmented to elastically relax the silicon lattice. Then, germanium is introduced into the relaxed silicon lattice, to produce a SiGe channel that is substantially stress-free and also defect-free. Using the method described, concentration of germanium achieved in a structurally stable film can be increased to a level greater than 85%.
Abstract:
A method for co-integrating finFETs of two semiconductor material types, e.g., Si and SiGe, on a bulk substrate is described. Fins for finFETs may be formed in an epitaxial layer of a first semiconductor type, and covered with an insulator. A portion of the fins may be removed to form voids in the insulator, and the voids may be filled by epitaxially growing a semiconductor material of a second type in the voids. The co-integrated finFETs may be formed at a same device level.
Abstract:
A method for co-integrating finFETs of two semiconductor material types, e.g., Si and SiGe, on a bulk substrate is described. Fins for finFETs may be formed in an epitaxial layer of a first semiconductor type, and covered with an insulator. A portion of the fins may be removed to form voids in the insulator, and the voids may be filled by epitaxially growing a semiconductor material of a second type in the voids. The co-integrated finFETs may be formed at a same device level.
Abstract:
Integrated circuits are disclosed in which the strain properties of adjacent pFETs and nFETs are independently adjustable. The pFETs include compressive-strained SiGe on a silicon substrate, while the nFETs include tensile-strained silicon on a strain-relaxed SiGe substrate. Adjacent n-type and p-type FinFETs are separated by electrically insulating regions formed by a damascene process. During formation of the insulating regions, the SiGe substrate supporting the n-type devices is permitted to relax elastically, thereby limiting defect formation in the crystal lattice of the SiGe substrate.
Abstract:
A self-aligned SiGe FinFET device features a relaxed channel region having a high germanium concentration. Instead of first introducing germanium into the channel and then attempting to relax the resulting strained film, a relaxed channel is formed initially to accept the germanium. In this way, a presence of germanium can be established without straining or damaging the lattice. Gate structures are patterned relative to intrinsic silicon fins, to ensure that the gates are properly aligned, prior to introducing germanium into the fin lattice structure. After aligning the gate structures, the silicon fins are segmented to elastically relax the silicon lattice. Then, germanium is introduced into the relaxed silicon lattice, to produce a SiGe channel that is substantially stress-free and also defect-free. Using the method described, concentration of germanium achieved in a structurally stable film can be increased to a level greater than 85%.
Abstract:
A multi-fin FINFET device may include a substrate and a plurality of semiconductor fins extending upwardly from the substrate and being spaced apart along the substrate. Each semiconductor fin may have opposing first and second ends and a medial portion therebetween, and outermost fins of the plurality of semiconductor fins may comprise an epitaxial growth barrier on outside surfaces thereof. The FINFET may further include at least one gate overlying the medial portions of the semiconductor fins, a plurality of raised epitaxial semiconductor source regions between the semiconductor fins adjacent the first ends thereof, and a plurality of raised epitaxial semiconductor drain regions between the semiconductor fins adjacent the second ends thereof.
Abstract:
A method for forming fins includes growing a SiGe layer and a silicon layer over a surface of a bulk Si substrate, patterning fin structures from the silicon layer and the SiGe layer and filling between the fin structures with a dielectric fill. Trenches are formed to expose end portions of the fin structures. A first region of the fin structures is blocked off. The SiGe layer of the fin structures of a second region is removed by selectively etching the fin structures from the end portions to form voids, which are filled with dielectric material. The silicon layer of the fin structures is exposed. The SiGe layer in the first region is thermally oxidized to drive Ge into the silicon layer to form SiGe fins on an oxide layer in the first region and silicon fins on the dielectric material in the second region.
Abstract:
Isolation trenches are etched through an active silicon layer overlying a buried oxide on a substrate into the substrate, and through any pad dielectric(s) on the active silicon layer. Lateral epitaxial growth of the active silicon layer forms protrusions into the isolation trenches to a lateral distance of at least about 5 nanometers, and portions of the isolation trenches around the protrusions are filled with dielectric. Raised source/drain regions are formed on portions of the active silicon layer including a dielectric. As a result, misaligned contacts passing around edges of the raised source/drain regions remain spaced apart from sidewalls of the substrate in the isolation trenches.
Abstract:
A SOI substrate layer formed of a silicon semiconductor material includes adjacent first and second regions. A portion of the silicon substrate layer in the second region is removed such that the second region retains a bottom portion made of the silicon semiconductor material. An epitaxial growth of a silicon-germanium semiconductor material is made on the bottom portion to produce a silicon-germanium region. The silicon region is patterned to define a first fin structure of a FinFET of a first (for example, n-channel) conductivity type. The silicon-germanium region is also patterned to define a second fin structure of a FinFET of a second (for example, p-channel) conductivity type.