Abstract:
A method which lower the series resistance of photosensitive devices includes providing a transparent film of a first electrically conductive material arranged on a transparent substrate; depositing and patterning a mask over the first electrically conductive material, such that openings in the mask have sloping sides which narrow approaching the substrate; depositing a second electrically conductive material directly onto the first electrically conductive material exposed in the openings of the mask, at least partially filling the openings; stripping the mask, leaving behind reentrant structures of the second electrically conductive material which were formed by the deposits in the openings of the mask; after stripping the mask, depositing a first organic material onto the first electrically conductive material in between the reentrant structures; and directionally depositing a third electrically conductive material over the first organic material deposited in between the reentrant structures, edges of the reentrant structures aligning deposition so that the third electrically conductive material does not directly contact the first electrically conductive material, and does not directly contact the second electrically conductive material.
Abstract:
An unipolar organic injection laser in which electrically-stimulated intraband transitions result in lasing. An active region includes at least one organic injector layer and at least one organic emitter layer. Each organic emitter layer has a first energy level and a second energy level on a same side of an energy gap defined by a conduction band and a valance band. Charge carriers are injected through the organic injector layer into the first energy level of the organic emitter layer when a voltage is applied across active region. The difference in energy between the first and second energy levels produces radiative emissions when charge carriers transition from the first energy level to the second energy level. Population inversion is maintained between the first and second energy levels, producing stimulated emission and lasing.
Abstract:
An organic photosensitive optoelectronic device having a plurality of cells disposed between a first electrode and a second electrode. Each cell includes a photoconductive organic hole transport layer adjacent to a photoconductive organic electron transport layer. A metal or metal substitute is disposed between each of the cells. At least one exciton blocking layer is disposed between the first electrode and the second electrode.
Abstract:
Organic light emitting devices are disclosed, which comprise a heterostructure for producing electroluminescence, wherein the heterostructure comprises an emissive layer containing a phosphorescent dopant compound. For example, the phosphorescent dopant compound may comprise platinum octaethylporphine (PtOEP), which is a compound having the chemical structure with the formula:
Abstract:
The present invention generally relates to organic photosensitive optoelectronic devices. More specifically, it is directed to organic photosensitive optoelectronic devices having a photoactive organic region containing encapsulated nanoparticles that exhibit plasmon resonances. An enhancement of the incident optical field is achieved via surface plasmon polariton resonances. This enhancement increases the absorption of incident light, leading to a more efficient device.
Abstract:
A device is provided having a first electrode, a second electrode, a first photoactive region having a characteristic absorption wavelength λ1 and a second photoactive region having a characteristic absorption wavelength λ2. The photoactive regions are disposed between the first and second electrodes, and further positioned on the same side of a reflective layer, such that the first photoactive region is closer to the reflective layer than the second photoactive region. The materials comprising the photoactive regions may be selected such that λ1 is at least about 10% different from λ2. The device may further comprise an exciton blocking layer disposed adjacent to and in direct contact with the organic acceptor material of each photoactive region, wherein the LUMO of each exciton blocking layer other than that closest to the cathode is not more than about 0.3 eV greater than the LUMO of the acceptor material.
Abstract:
A device is provided having a first electrode, a second electrode, a first photoactive region having a characteristic absorption wavelength λ1 and a second photoactive region having a characteristic absorption wavelength λ2. The photoactive regions are disposed between the first and second electrodes, and further positioned on the same side of a reflective layer, such that the first photoactive region is closer to the reflective layer than the second photoactive region. The materials comprising the photoactive regions may be selected such that λ1 is at least about 10% different from λ2. The device may further comprise an exciton blocking layer disposed adjacent to and in direct contact with the organic acceptor material of each photoactive region, wherein the LUMO of each exciton blocking layer other than that closest to the cathode is not more than about 0.3 eV greater than the LUMO of the acceptor material.
Abstract:
A transistor is disclosed comprising a collector, which itself comprises a small molecule organic material. A base comprising a doped small molecule organic material that forms a junction with the collector and an emitter comprising a small molecule organic material that forms a junction with the base is further disclosed. Electrodes are coupled to the collector, base and emitter. The transistor is bipolar.
Abstract:
Organic light emitting devices are disclosed which are comprised of a heterostructure for producing electroluminescence wherein the heterostructure is comprised of an emissive layer containing a phosphorescent dopant compound. For example, the phosphorescent dopant compound may be comprised of platinum octaethylporphine (PtOEP), which is a compound having the chemical structure with the formula:
Abstract:
The present invention relates to organic lasers. More specifically, the present invention is directed to an organic laser that provides a self-stimulated source of coherent radiation originating from organic microcavity polaritons. The organic polariton laser of the present invention comprises a substrate, a resonant microcavity comprising an organic polariton emission layer; and an optical pump. In preferred embodiments the optical pump is a microcavity OLED allowing for the fabrication of a self-contained or integrated device.