Low-K Gate Spacer and Formation Thereof
    93.
    发明申请

    公开(公告)号:US20200075419A1

    公开(公告)日:2020-03-05

    申请号:US16674443

    申请日:2019-11-05

    Abstract: Gate structures and gate spacers, along with methods of forming such, are described. In an embodiment, a structure includes an active area on a substrate, a gate structure on the active area and over the substrate, and a low-k gate spacer on the active area and along a sidewall of the gate structure. The gate structure includes a conformal gate dielectric on the active area and includes a gate electrode over the conformal gate dielectric. The conformal gate dielectric extends vertically along a first sidewall of the low-k gate spacer. In some embodiments, the low-k gate spacer can be formed using a selective deposition process after a dummy gate structure has been removed in a replacement gate process.

    TRANSISTOR GATE STRUCTURES AND METHODS OF FORMING THE SAME

    公开(公告)号:US20250142904A1

    公开(公告)日:2025-05-01

    申请号:US19002361

    申请日:2024-12-26

    Abstract: In an embodiment, a device includes: a first nanostructure; a second nanostructure; a gate dielectric around the first nanostructure and the second nanostructure, the gate dielectric including dielectric materials; and a gate electrode including: a work function tuning layer on the gate dielectric, the work function tuning layer including a pure work function metal, the pure work function metal of the work function tuning layer and the dielectric materials of the gate dielectric completely filling a region between the first nanostructure and the second nanostructure, the pure work function metal having a composition of greater than 95 at. % metals; an adhesion layer on the work function tuning layer; and a fill layer on the adhesion layer.

    Semiconductor Device and Method
    98.
    发明申请

    公开(公告)号:US20250126822A1

    公开(公告)日:2025-04-17

    申请号:US19002882

    申请日:2024-12-27

    Abstract: Semiconductor devices including fin-shaped isolation structures and methods of forming the same are disclosed. In an embodiment, a semiconductor device includes a fin extending from a semiconductor substrate; a shallow trench isolation (STI) region over the semiconductor substrate adjacent the fin; and a dielectric fin structure over the STI region, the dielectric fin structure extending in a direction parallel to the fin, the dielectric fin structure including a first liner layer in contact with the STI region; and a first fill material over the first liner layer, the first fill material including a seam disposed in a lower portion of the first fill material and separated from a top surface of the first fill material, a first carbon concentration in the lower portion of the first fill material being greater than a second carbon concentration in an upper portion of the first fill material.

    Semiconductor device and method
    99.
    发明授权

    公开(公告)号:US12272557B2

    公开(公告)日:2025-04-08

    申请号:US18363563

    申请日:2023-08-01

    Abstract: In an embodiment, a method includes: depositing a gate dielectric layer on a first fin and a second fin, the first fin and the second fin extending away from a substrate in a first direction, a distance between the first fin and the second fin decreasing along the first direction; depositing a sacrificial layer on the gate dielectric layer by exposing the gate dielectric layer to a self-limiting source precursor and a self-reacting source precursor, the self-limiting source precursor reacting to form an initial layer of a material of the sacrificial layer, the self-reacting source precursor reacting to form a main layer of the material of the sacrificial layer; annealing the gate dielectric layer while the sacrificial layer covers the gate dielectric layer; after annealing the gate dielectric layer, removing the sacrificial layer; and after removing the sacrificial layer, forming a gate electrode layer on the gate dielectric layer.

    Transistor Gates and Method of Forming

    公开(公告)号:US20250098223A1

    公开(公告)日:2025-03-20

    申请号:US18967403

    申请日:2024-12-03

    Abstract: A device includes a first nanostructure; a second nanostructure over the first nanostructure; a first high-k gate dielectric around the first nanostructure; a second high-k gate dielectric around the second nanostructure; and a gate electrode over the first and second high-k gate dielectrics. A portion of the gate electrode between the first nanostructure and the second nanostructure comprises: a first p-type work function metal; a barrier material over the first p-type work function metal; and a second p-type work function metal over the barrier material, the barrier material physically separating the first p-type work function metal from the second p-type work function metal.

Patent Agency Ranking