摘要:
A method of placing a dummy fill layer on a substrate is disclosed (FIG. 2). The method includes identifying a sub-region of the substrate (210). A density of a layer in the sub-region is determined (212). A pattern of the dummy fill layer is selected to produce a predetermined density (216). The selected pattern is placed in the sub-region (208).
摘要:
Simulation of an electronic circuit including a model of a ferroelectric capacitor. The model of the ferroelectric capacitor includes a multi-domain ferroelectric capacitor, in which each of the domains is associated with a positive and a negative coercive voltage. A probability distribution function of positive and negative coercive voltages is defined, from which a weighting function of the distribution of domains having those coercive voltages is defined. To create a model of a small ferroelectric capacitor, a Poisson probability distribution is assigned to each of an array of gridcells defining the probability distribution function of positive and negative coercive voltages, and a number of domains assigned to each gridcell is randomly selected according to that Poisson distribution and an expected number of domains in the modeled capacitor for that gridcell, based on the area of the modeled capacitor. The electrical behavior of the ferroelectric capacitor is evaluated by evaluating the superposed polarization of each of the randomly selected domains.
摘要:
A ferroelectric device employs ferroelectric electrodes as local interconnect(s). One or more circuit features are formed within or on a semiconductor body. A first dielectric layer is formed over the semiconductor body. Lower contacts are formed within the first dielectric layer. A bottom electrode is formed over the first dielectric layer and on the lower contacts. A ferroelectric layer is formed on the bottom electrode. A top electrode is formed on the ferroelectric layer. A second dielectric layer is formed over the first dielectric layer. Upper contacts are formed within the second dielectric layer and in contact with the top electrode. Conductive features are formed on the upper contacts.
摘要:
A via etch to contact a capacitor with ferroelectric between electrodes together with dielectric on an insulating diffusion barrier includes two-step etch with F-based dielectric etch and Cl- and F-based barrier etch.
摘要:
Semiconductor devices and fabrication methods are disclosed, in which one or more low silicon-hydrogen SiN barriers are provided to inhibit hydrogen diffusion into ferroelectric capacitors and into transistor gate dielectric interface areas. The barriers may be used as etch stop layers in various levels of the semiconductor device structure above and/or below the level at which the ferroelectric capacitors are formed so as to reduce the hydrogen related degradation of the switched polarization properties of the ferroelectric capacitors and to reduce negative bias temperature instability in the device transistors.
摘要:
The present invention is directed to a method of forming a ferroelectric capacitor having a (111) PZT texture. The method includes forming a smooth bottom electrode diffusion barrier layer that facilitates a preferential (111) texture in the subsequently formed bottom electrode layer. The (111) bottom electrode layer texture than facilitates a high quality (111) texture in the overlying PZT layer, thereby improving bit-to-bit polarization charge uniformity for various capacitors as the ferroelectric capacitor sizes continue to shrink.
摘要:
A ferroelectric memory device comprises a logic programmable capacitance reference circuit. The circuit is adapted to generate a reference voltage during a sense mode of operation, wherein the reference voltage comprises a value that is a function of one more memory conditions. The memory device further comprises a bit line pair, wherein a first bit line of the bit line pair has a ferroelectric capacitor coupled thereof for sensing thereof, and a second bit line of the bit line pair is coupled to the reference voltage. A sense circuit is coupled to the bit line pair and is configured to detect a data state associated with the ferroelectric capacitor using a voltage associated with the first bit line and reference voltage on the second bit line.
摘要:
A method of fabricating a ferroelectric capacitor is disclosed. The method comprises the decreases a reduction in a bottom electrode material during formation of the ferroelectric dielectric portion of the capacitor. In the above manner, a fatigue resistance of the ferroelectric capacitor is increased substantially.
摘要:
An embodiment of the instant invention is a method of fabricating a ferroelectric capacitor which is situated over a structure, the method comprising the steps of: forming a bottom electrode on the structure (124 of FIG. 1), the bottom electrode having a top surface and sides; forming a capacitor dielectric (126 of FIG. 1) comprised of a ferroelectric material on the bottom electrode, the capacitor dielectric having a top surface and sides; forming a top electrode (128 and 130 of FIG. 1) on the capacitor dielectric, the top electrode having a top surface and sides, the ferroelectric capacitor is comprised of the bottom electrode, the capacitor dielectric, and the top electrode; forming a barrier layer (118 and 120 of FIG. 1) on the side of the bottom electrode, the side of the capacitor dielectric, and the side of the top electrode; forming a dielectric layer on the barrier layer and the structure, the dielectric having a top surface and a bottom surface; and performing a thermal step for a duration at a temperature between 400 and 900 C. in an ambient comprised of a gas selected from the group consisting of: argon, nitrogen, and a combination thereof, the step of performing a thermal step being performed after the step of forming the barrier layer.
摘要:
A via etch to contact a capacitor with ferroelectric between electrodes together with dielectric on an insulating diffusion barrier includes two-step etch with F-based dielectric etch and Cl- and F-based barrier etch.