摘要:
Semiconductor devices and fabrication methods are disclosed, in which one or more low silicon-hydrogen SiN barriers are provided to inhibit hydrogen diffusion into ferroelectric capacitors and into transistor gate dielectric interface areas. The barriers may be used as etch stop layers in various levels of the semiconductor device structure above and/or below the level at which the ferroelectric capacitors are formed so as to reduce the hydrogen related degradation of the switched polarization properties of the ferroelectric capacitors and to reduce negative bias temperature instability in the device transistors.
摘要:
Hydrogen barriers and fabrication methods are provided for protecting ferroelectric capacitors (CFE) from hydrogen diffusion in semiconductor devices (102), wherein nitrided aluminum oxide (N—AlOx) is formed over a ferroelectric capacitor (CFE), and one or more silicon nitride layers (112, 117) are formed over the nitrided aluminum oxide (N—AlOx). Hydrogen barriers are also provided in which an aluminum oxide (AlOx, N—AlOx) is formed over the ferroelectric capacitors (CFE), with two or more silicon nitride layers (112, 117) formed over the aluminum oxide (AlOx, N—AlOx), wherein the second silicon nitride layer (112) comprises a low silicon-hydrogen SiN material.
摘要:
Hydrogen barriers and fabrication methods are provided for protecting ferroelectric capacitors (CFE) from hydrogen diffusion in semiconductor devices (102), wherein nitrided aluminum oxide (N—AlOx) is formed over a ferroelectric capacitor (CFE), and one or more silicon nitride layers (112, 117) are formed over the nitrided aluminum oxide (N—AlOx). Hydrogen barriers are also provided in which an aluminum oxide (AlOx, N—AlOx) is formed over the ferroelectric capacitors (CFE), with two or more silicon nitride layers (112, 117) formed over the aluminum oxide (AlOx, N—AlOx), wherein the second silicon nitride layer (112) comprises a low silicon-hydrogen SiN material.
摘要翻译:提供了氢屏障和制造方法,用于保护铁电电容器(CFE)在半导体器件(102)中的氢扩散,其中氮化的氧化铝(N-AlO x X)为 形成在铁电电容器(CFE)上,并且在氮化的氧化铝(N-AlO x N)上形成一个或多个氮化硅层(112,117)。 还提供了氢屏障,其中在铁电电容器(C FE)上形成氧化铝(AlO x N,N-AlO x x) ,其上形成有氧化铝(AlO x N,N-AlO x)上的两个或更多个氮化硅层(112,117),其中第二氮化硅层(112 )包括低硅氢SiN材料。
摘要:
The present invention forms sidewall diffusion barrier layer(s) that mitigate hydrogen contamination of ferroelectric capacitors. Sidewall diffusion barrier layer(s) of the present invention are formed via a physical vapor deposition process at a low temperature. By so doing, the sidewall diffusion barrier layer(s) are substantially amorphous and provide superior protection against hydrogen diffusion than conventional and/or crystalline sidewall diffusion barrier layers.
摘要:
A ferroelectric memory device comprises a logic programmable capacitance reference circuit. The circuit is adapted to generate a reference voltage during a sense mode of operation, wherein the reference voltage comprises a value that is a function of one more memory conditions. The memory device further comprises a bit line pair, wherein a first bit line of the bit line pair has a ferroelectric capacitor coupled thereof for sensing thereof, and a second bit line of the bit line pair is coupled to the reference voltage. A sense circuit is coupled to the bit line pair and is configured to detect a data state associated with the ferroelectric capacitor using a voltage associated with the first bit line and reference voltage on the second bit line.
摘要:
A method for controlling the crystallographic texture of thin films with anisotropic ferroelectric polarization or permittivity by means of ion bombardment resulting in a texture with higher ferroelectric polarization or permittivity which is normally energetically disfavored.
摘要:
A method is provided for fabricating a ferroelectric capacitor structure including a method for etching and cleaning patterned ferroelectric capacitor structures in a semiconductor device. The method comprises etching portions of an upper electrode, etching ferroelectric material, and etching a lower electrode to define a patterned ferroelectric capacitor structure, and etching a portion of a lower electrode diffusion barrier structure. The method further comprises ashing the patterned ferroelectric capacitor structure using a first ashing process, where the ash comprises an oxygen/nitrogen/water-containing ash, performing a wet clean process after the first ashing process, and ashing the patterned ferroelectric capacitor structure using a second ashing process.
摘要:
A ferroelectric structure on an integrated circuit and methods of making and using the same are disclosed, which may be used, for instance, in a high-speed, non-volatile, non-destructive readout random-access memory device. Generally, the ferroelectric structure combines a thin film ferroelectric variable resistor and a substrate (e.g. silicon) transistor, using a semiconducting film which is common to both. A field effect transistor 26 integrated into substrate 30 has a gate oxide 36 and a semiconducting gate electrode 38 with electrical connections at a first end 44 and a second end 46. Overlying gate electrode 38 is a ferroelectric thin film 40 and a conductive electrode 42. The polarization of ferroelectric thin film 40 is set by applying an appropriate voltage between gate electrode 38 and conductive electrode 42. The polarization of ferroelectric thin film 40 may be subsequently determined by applying a read voltage to 42 and 44, thus causing a voltage V2 to appear at 46 which is determined by the polarization of the ferroelectric variable resistor formed by 38 and 40. Since 38 also forms the gate electrode for field effect transistor 26, the magnitude of V2 affects the magnitude of current I2. Thus I2 is effectively an amplified signal related to the ferroelectric variable resistance which may be read without perturbing the polarization of ferroelectric thin film 40.
摘要:
A ferroelectric structure on an integrated circuit is disclosed, which may be used, for instance, in a high-speed, non-volatile, non-destructive readout random-access memory device. Generally, the ferroelectric structure combines a thin film ferroelectric variable resistor and a substrate (e.g. silicon) transistor, using a semiconducting film which is common to both. A field effect transistor 26 integrated into substrate 30 has a gate oxide 36 and a semiconducting gate electrode 38 with electrical connections at a first end 44 and a second end 46. Overlying gate electrode 38 is a ferroelectric thin film 40 and a conductive electrode 42. The polarization of ferroelectric thin film 40 is set by applying an appropriate voltage between gate electrode 38 and conductive electrode 42. The polarization of ferroelectric thin film 40 may be subsequently determined by applying a read voltage to 42 and 44, thus causing a voltage V2 to appear at 46 which is determined by the polarization of the ferroelectric variable resistor formed by 38 and 40. Since 38 also forms the gate electrode for field effect transistor 26, the magnitude of V2 affects the magnitude of current I2. Thus I2 is effectively an amplified signal related to the ferroelectric variable resistance which may be read without perturbing the polarization of ferroelectric thin film 40.
摘要:
A via etch to contact a capacitor with ferroelectric between electrodes together with dielectric on an insulating diffusion barrier includes two-step etch with F-based dielectric etch and Cl- and F-based barrier etch.