摘要:
With use of a simplified program or calculating device for motion compensation, a video decoding device decodes video data compressed by motion detection operations on macroblock units, as in the MPEG-4AVC standard. The video decoding device splits compressed data blocks of the prescribed size, 16×16 pixels for instance, to generate sub-blocks, which are smaller than the blocks and on which the video decoding device is able to execute motion compensation operations. The video decoding device duplicates a motion vector assigned to a given block to generate as many motion vectors as there are sub-blocks in the given block, and executes motion compensation on each sub-block using the corresponding duplicate motion vector. Data resulting from the motion compensation operation on each sub-block is combined to obtain a target block corresponding to the given block.
摘要:
A decoding apparatus (100) according to the present invention includes: a decoding unit (101) which decodes identification information identifying an orthogonal transform basis for inverse orthogonal transform; an orthogonal transform basis accumulation unit (110) accumulating orthogonal transform bases for inverse orthogonal transform; an orthogonal transform basis storage unit (103) storing an orthogonal transform basis for inverse transform, from among the stored orthogonal transform bases; an inverse orthogonal transform unit (112) which performs inverse orthogonal transform using the identified orthogonal transform basis; and an orthogonal transform basis transfer control unit (102) which transfers the identified orthogonal transfer basis from the orthogonal transform basis accumulation unit (110) to the orthogonal transfer basis storage unit (103) only when the identified orthogonal transform basis is not yet stored therein. With this structure, it is possible to reduce the memory bandwidth for the memory storing the orthogonal transform basis and the memory access latency.
摘要:
[Object] To provide a radical generator which can produce radicals at higher density.[Means for Solution] The radical generator includes a supply tube 10 made of SUS, a hollow cylindrical plasma-generating tube 11 which is connected to the supply tube 10 and which is made of pyrolytic boron nitride (PBN). A cylindrical CCP electrode 13 is disposed outside the plasma-generating tube 11. A coil 12 is provided so as to wind about the outer circumference of the plasma-generating tube at the downstream end of the CCP electrode 13. A parasitic-plasma-preventing tube 15 made of a ceramic material is inserted into an opening of the supply tube 10 at the connection site between the supply tube 10 and the plasma-generating tube 11.
摘要:
Provided is an image processing device which performs plural processes efficiently, by pipelining, on a coded stream obtained by coding an image based on various coding unit blocks. The image processing device which performs plural first processes, by pipelining, on a coded stream obtained by dividing an image into plural coding unit blocks having at least two sizes, and coding the image on a coding unit block-by-block basis includes: plural first process units which perform, by the pipelining, the plural first processes on the coded stream by each executing one of the plural first processes; and a control unit which divides the coded stream into plural first processing unit blocks each having a first size, and control the plural first process units to cause the plural first processes to be executed for each of the first processing unit blocks.
摘要:
[PROBLEM] A light extraction efficiency increases by suppressing a reflection of a semiconductor layer and a transparent substrate.[MEANS FOR SOLVING] A semiconductor light emitting element comprising a semiconductor stack part including a light emitting layer is formed on a main surface of a substrate, a diffractive face that light emitted from the light emitting layer is incident to, that convex portions or concave portions are formed in a period which is longer than optical wavelength of the light and is shorter than coherent length of the light, is formed on a main surface side of the substrate, and a reflective face which reflects light diffracted at the diffractive face and let this light be incident to the diffractive face again is formed on a back surface side of the substrate.
摘要:
Provided is a resin composition superior in the adhesiveness to a metal and having high organic solvent resistance, particularly, a resin composition preferable as a sealant for an organic electrolyte battery, which shows superior adhesiveness to a terminal or a collector made of a highly heat resistant metal such as stainless steel and nickel, does not easily develop degradation even when contacted with an organic electrolytic solution at a high temperature, and does not easily influence an electrolytic solution, and a highly reliable organic electrolyte battery wherein leaching of an electrolytic solution from an electrolyte layer is prevented by the resin composition.A resin composition containing (A) an epoxy resin containing at least (E1) an epoxy resin having an aromatic ring and an alicyclic skeleton and (B) a latent curing agent.
摘要:
With use of a simplified program or calculating device for motion compensation, a video decoding device decodes video data compressed by motion detection operations on macroblock units, as in the MPEG-4AVC standard. The video decoding device splits compressed data blocks of the prescribed size, 16×16 pixels for instance, to generate sub-blocks, which are smaller than the blocks and on which the video decoding device is able to execute motion compensation operations. The video decoding device duplicates a motion vector assigned to a given block to generate as many motion vectors as there are sub-blocks in the given block, and executes motion compensation on each sub-block using the corresponding duplicate motion vector. Data resulting from the motion compensation operation on each sub-block is combined to obtain a target block corresponding to the given block.
摘要:
The present invention allows a reproducing device that can be used in various device environmental conditions to execute adequate output operation according to a device environmental condition. When reproducing a content signal of audio and video, a reproducing device determines a device environmental condition as the coupling state of the reproducing device and surroundings of the reproducing device. Subsequently, the reproducing device implements control according to output part information and control information that are set with being associated with the device environmental condition. Based on the output part information, either or both of a main-body output unit and an external output unit are controlled as a part for outputting audio or video. In addition, control corresponding to the registered control information is executed inside the device, or details of the control are indicated to a coupled external device.
摘要:
A decoding apparatus (100) includes: a first memory unit (20) storing pixel data of a decoded reference image to be referred to in decoding; a second memory unit (30) having a storage capacity smaller than that of the first memory unit (20) and providing a data reading speed faster than that provided by the first memory unit (20); a search area transfer unit (40) transferring, from the first memory unit (20) to the second memory unit (30), pixel data in a search area that is a part of the reference image and required to calculate a motion vector for the block; a motion vector operating unit (50) calculating the motion vector by repeatedly (i) reading out, from the second memory unit (30), the pixel data and (ii) performing a predetermined operation on the pixel data; and a decoding unit (60) decoding the block using the calculated motion vector.
摘要:
To provide a moving picture decoding device capable of continuing motion compensation even when an error is included in a filter coefficient for motion compensation. The moving picture decoding device includes: a decoding unit (1001) which decodes (i) a motion vector indicating a sub-pixel position and (ii) a filter coefficient for identifying a pixel value at the sub-pixel position, the motion vector and the filter coefficient being included in a coded stream; an error detecting unit (1002) which detects an error in the filter coefficient; a modifying unit (1010) which modifies one of the motion vector and the filter coefficient so as to enable identification of a pixel value at a pixel position for motion compensation, when the error is detected; and a motion compensation unit (1007) which performs motion compensation by identifying the pixel value at the pixel position using the modified one, when the error is detected.