摘要:
Configuring an analog-to-digital converter includes receiving a control signal and an input analog signal at an analog-to-digital converter, where the control signal has either a first state or a second state. The first state is associated with a first configuration and the second state is associated with a second configuration. If the control signal has the first state, the analog-to-digital-converter is configured in the first configuration and a digital signal comprising a first digital signal is generated according to a pipeline conversion. If the control signal has the second state the analog-to-digital converter is configured in the second configuration and the digital signal comprising a second digital signal is generated according to a multi-stage sigma delta modulation conversion. The digital signal is processed to yield a digital output.
摘要:
Extracts of vetiver oil were found to be significant repellents and toxicants of ants, ticks, and cockroaches. Nootkatone was shown to significantly decrease ant invasion and increase mortality in fire ants. Nootkatone is an effective repellent and toxicant of ants either by itself or as an addition to other substrates, including mulches made from vetiver grass roots, diatomaceous earth, alumina, silica, clays; building materials made from either aluminum or wood; and other suitable solid substances. Nootkatone was also a repellent and toxicant to ticks; and a repellent to cockroaches. Nootkatone is non-toxic to humans and other mammals and is environmentally safe. In addition, it is believed that other extracts of vetiver oil, specifically α-cedrene, zizanol and bicyclovetivenol, will be effective against ants, ticks, and cockroaches.
摘要:
A chemical-mechanical polish (CMP) machine and fabrication process using the same. The CMP machine has a CMP retaining ring comprising: an inner peripheral surface; an outer peripheral surface; a lower surface adapted to contact and depress an upper surface of a polishing pad during chemical mechanical polishing of a lower surface of a substrate. The substrate is contained within the inner peripheral surface of the retaining ring during chemical mechanical polishing. At least a groove on the lower surface of the retaining ring. At least a portion of the groove has a rounded contour. In an aspect, the groove has a semicircle profile. In another aspect, the groove has a semicircle profile and a curved top corner profile at adjacent to the lower surface of the retaining ring. The retaining ring with a curved portion of groove reduces the accumulation of dried slurry in the groove and thus reduces micro-scratches.
摘要:
A digital-to-analog converter (DAC) error suppression arrangement suppresses DAC error arising from mismatched elements contained in a DAC (640 and/or 645) that is part of a modulator (FIG. 6). A low pass averaging (LPA) index decoder 650 controls a shifting arrangement 635 to shift a digital word T2 derived from modulator output Y so that the DAC error distribution constitutes a low pass profile (FIG. 5). Thus, DAC error is suppressed at higher frequencies (close to half the sampling rate), thereby providing improved spurious free dynamic range (SFDR). The LPA index decoder 650 causes the shifting arrangement 635 to shift the digital word T2 using only a single pointer per clock cycle.
摘要:
A device contains a first device and a second device. In one embodiment, the first device drives at least three signals, a first reference signal, and a second reference signal. The second device, which is coupled to the first device, receives the at least three signals, the first reference signal, and the second reference signal. The second device identifies values for the at least three signals according to the first reference signal and the second reference signal.
摘要:
Dynamic element matching systems and methods are provided in which a current dynamic element matching code is generated according to a previous dynamic element matching code, a digital input code, and a dither code. The current dynamic element matching code is then used along with the digital input code to select digital to analog converter elements.
摘要:
An intermetal dielectric structure for integrated circuits is provided having a premetal dielectric and a metal line thereon, with a SRO liner on the premetal dielectric layer and the metal lines, a FGS dielectric layer over the SRO liner, a SRO film over the FGS dielectric layer, and a TEOS dielectric layer over the SRO film. Vias through the FGS dielectric layer are treated to have fluorine-free regions around the vias. The structure is not subject to fluorine attack on the metal lines or vias while having a stable FGS dielectric layer with less fluorine out-gassing and out-diffusion.
摘要:
An offset error compensation system is provided that includes a comparator (42) having an offset error (44), a positive receptor (56), a negative receptor (58), a positive output (60), and a negative output (62). A sequence generator (14) generates control signals (22) representing normal cycles and swap cycles. A first cross connect (46) is coupled to the positive receptor (56), the negative receptor (58), a positive input signal (52), and a negative input signal (54). The first cross connect (46) couples the positive input signal (52) to the positive receptor (56) and the negative input signal (54) to the negative receptor (58) in response to a normal cycle. The first cross connect (46) further couples the positive input signal (52) to the negative receptor (58) and the negative input signal (54) to the positive receptor (56) in response to a swap cycle. A second cross connect (48) is coupled to the positive receptor (56), the negative receptor (58), the positive output (60), and the negative output (62). The second cross connect (48) couples the positive receptor (56) to the positive output (60) and the negative receptor (58) to the negative output (62) in response to the normal cycle. The second cross connect (48) further couples the positive receptor (56) to the negative output (62) and the negative receptor (58) to the positive output (60) in response the swap cycle.
摘要:
In one embodiment, a dielectric layer (144, 156) overlying a semiconductor substrate (28) is uniformly polished. During polishing, the perimeter (32) of the semiconductor substrate (28) overlies a peripheral region (16, 48, 66, 86, 120) of a polishing pad (6, 42, 60, 80, 100) and an edge portion (36) of the front surface of semiconductor substrate (28) is not in contact with the front surface (18, 50, 68, 88, 122) of the polishing pad (6, 42, 60, 80, 100), in the peripheral region (16, 48, 66, 86, 120). As a result, the polishing rate at the edge portion (36) of the semiconductor substrate (28) is reduced, and the semiconductor substrate (28) is polished with improved center to edge uniformity. Since the semiconductor substrate (28) is polished with improved center to edge uniformity, die yield is increased because die located within the edge portion (36) of the semiconductor substrate (28) are not over polished.
摘要:
A method of forming a metal interconnect within a fluorinated silica glass dielectric layer while preventing outgassing from the FSG dielectric layer, comprising the following steps. A semiconductor structure having a metal structure, with an overlying liner layer, formed thereover is provided. A FSG dielectric layer is formed over the liner layer. The FSG dielectric layer having an exposed upper surface. The FSG dielectric layer is treated with a first nitrogen gas/plasma treatment to form a fluorine depleted upper capping layer from the exposed surface of the FSG dielectric layer. A TEOS oxide layer is formed over the upper capping layer. The TEOS oxide layer is planarized to form a planarized TEOS oxide layer. The planarized TEOS oxide layer, the upper capping layer, the treated FSG dielectric layer, and the liner layer are patterned to form a via hole therethrough, exposing a portion of the metal structure and exposing sidewalls of the patterned treated FSG dielectric layer within the via opening. At least the exposed sidewalls of the patterned treated fluorinated silicon glass dielectric layer within the via opening is treated with a second nitrogen gas/plasma treatment to form a fluorine depleted sidewall capping layer from the exposed sidewalls of the patterned treated fluorinated silicon glass dielectric layer, wherein the upper and sidewall capping layers prevent the outgassing from the patterned FSG dielectric layer. A metal interconnect is formed within the via opening.