摘要:
The present invention relates to a device having adjustable channel stress and method thereof. There is provided an MOS device (200, 300), comprising a semiconductor substrate (202, 302); a channel formed on the semiconductor substrate (202, 302); a gate dielectric layer (204, 304) formed on the channel; a gate conductor (206, 306) formed on the gate dielectric layer (204, 304); and a source and a drain formed on both sides of the gate; wherein the gate conductor (206, 306) has a shape for producing a first stress to be applied to the channel so as to adjust the mobility of carriers in the channel. In the present invention, the shape of the gate conductor may be adjusted by controlling the etching process parameter, thus the stress in the channel may be adjusted conveniently, meanwhile, it may be used in combination with other mechanisms that generate stresses to obtain the desired channel stress.
摘要:
An inverter device includes at least a first transistor connected between a power source node and ground. The first transistor includes a first gate and a first terminal that are internally capacitive-coupled to control a boost voltage at a boost node. The first terminal is one of a first source and a first drain of the first transistor.
摘要:
A thin film transistor having an offset or a lightly doped drain (LDD) structure by self alignment and a method of fabricating the same comprises a substrate, a silicon layer disposed on the substrate and including a channel region, a source region and a drain region at both sides of the channel region, and offset regions, each offset regions disposed between the channel region and one of the source and drain regions at both sides of the channel region, a gate insulating layer covering the channel region and the offset regions disposed at both sides of the channel region excluding the source and drain regions, and a gate layer formed on the channel region excluding the offset regions. The thin film transistor has the structure in which an offset or LDD is obtained without an additional mask process.
摘要:
Provided is a method for manufacturing a MOSFET, including: forming a shallow trench isolation (STI) in a semiconductor substrate to define an active region for the MOSFET; performing etching with the STI as a mask, to expose a surface of the semiconductor substrate, and to protrude a portion of the STI with respect to the surface of the semiconductor substrate, resulting in a protruding portion; forming a first spacer on sidewalls of the protruding portion; forming a gate stack on the semiconductor substrate; forming a second spacer surrounding the gate stack; forming openings in the semiconductor substrate with the STI, the gate stack, the first spacer and the second spacer as a mask; epitaxially growing a semiconductor layer with a bottom surface and sidewalls of each of the openings as a growth seed layer; and performing ion implantation into the semiconductor layer to form source and drain regions.
摘要:
The present invention discloses a semiconductor device, comprising: a substrate, a gate stack structure on the substrate, source and drain regions in the substrate on both sides of the gate stack structure, and a channel region between the source and drain regions in the substrate, characterized in that at least one of the source and drain regions comprises a GeSn alloy. In accordance with the semiconductor device and method for manufacturing the same of the present invention, GeSn stressed source and drain regions with high concentration of Sn is formed by implanting precursors and performing a laser rapid annealing, thus the device carrier mobility of the channel region is effectively enhanced and the device drive capability is further improved.
摘要:
The present invention discloses a method for manufacturing a semiconductor device comprising the steps of: forming a plurality of source and drain regions in a substrate; forming a plurality of gate spacer structures and an interlayer dielectric layer around the gate spacer structures on the substrate, wherein the gate spacer structures enclose a plurality of first gate trenches and a plurality of second gate trenches; sequentially depositing a first gate insulating layer and a second gate insulating layer, a first blocking layer and a second work function regulating layer in the first and second gate trenches; performing selective etching to remove the second work function regulating layer from the first gate trenches to expose the first blocking layer; depositing a first work function regulating layer on the first blocking layer in the first gate trenches and on the second work function regulating layer in the second gate trenches; and depositing a resistance regulating layer on the first work function regulating layer in the first gate trenches and on the first work function regulating layer in the second gate trench.
摘要:
This invention relates to a MOS device for making the source/drain region closer to the channel region and a method of manufacturing the same, comprising: providing an initial structure, which includes a substrate, an active region, and a gate stack; performing ion implantation in the active region on both sides of the gate stack, such that part of the substrate material undergoes pre-amorphization to form an amorphous material layer; forming a first spacer; with the first spacer as a mask, performing dry etching, thereby forming a recess, with the amorphous material layer below the first spacer kept; performing wet etching using an etchant solution that is isotropic to the amorphous material layer and whose etch rate to the amorphous material layer is greater than or substantially equal to the etch rate to the {100} and {110} surfaces of the substrate material but is far greater than the etch rate to the {111} surface of the substrate material, thus removing the amorphous material layer below the first spacer, such that the substrate material below the amorphous material layer is exposed to the solution and is etched thereby, and in the end, forming a Sigma shaped recess that extends to the nearby region below the gate stack; and epitaxially forming SiGe in the Sigma shaped recess.
摘要:
The invention discloses an etch-back method for planarization at the position-near-interface of an interlayer dielectric (ILD), comprising: depositing or growing a thick layer of SiO2 by the chemical vapor deposition or oxidation method on a surface of a wafer; spin-coating a layer of SOG and then performing a heat treatment to obtain a relatively uniform stack structure; perform an etch-back on the SOG using a plasma etching, and stopping when approaching the position-near-interface of SiO2; performing a plasma etch-back on the remaining SOG/SiO2 structure at the position-near-interface until achieving a desired thickness. Since a two-step etching at the position-near-interface is employed, an extremely good smooth surface of the ILD is obtained. That is, a planar and tidy surface of the ILD is obtained not only in the center region, but also even at the edge of the wafer.
摘要:
The present invention provides a semiconductor structure, comprising: a substrate; a gate stack located on the substrate and comprising at least a gate dielectric layer and a gate electrode layer; source/drain regions, located in the substrate on both sides of the gate stack; an STI structure, located in the substrate on both sides of the source/drain regions, wherein the cross-section of the STI structure is trapezoidal, Sigma-shaped or inverted trapezoidal depending on the type of the semiconductor structure. Correspondingly, the present invention further to provides a method of manufacturing the semiconductor structure. In the present invention, STI structures having different shapes can be combined with different stress fillers to apply tensile stress or compressive stress laterally to the channel, which will produce a positive impact on the electron mobility of NMOS and the hole mobility of PMOS and increase the channel current of the device, thereby effectively improving the performance of the semiconductor structure.
摘要:
The present invention discloses a semiconductor device, which comprises a substrate, a buffer layer on the substrate, an inversely doped isolation layer on the buffer layer, a barrier layer on the inversely doped isolation layer, a channel layer on the barrier layer, a gate stack structure on the channel layer, and source and drain regions at both sides of the gate stack structure, characterized in that the buffer layer and/or the barrier layer and/or the inversely doped isolation layer are formed of SiGe alloys or SiGeSn alloys, and the channel layer is formed of a GeSn alloy. The semiconductor device according to the present invention uses a quantum well structure of SiGe/GeSn/SiGe to restrict transportation of carriers, and it introduces a stress through lattice mis-match to greatly increase the carrier mobility, thus improving the device driving capability so as to be adapted to high-speed and high-frequency application.