摘要:
A high-speed signal input to and output from a high-speed optical interface part connected to an optical fiber transmission line is switched to different lines such that the switching is conducted by cross connect parts on an arbitrary basis. The high-speed signal is separated so as to obtain the low-speed signal. The low-speed signal output from the cross connect parts is separated so as to obtain the subscriber signal by signal terminal parts. Call connections are conducted for each subscriber by a time slot interchange part, whereupon a subscriber interface part performs analog-to-digital and digital-to-analog conversion so as to serve as an interface for a subscriber.
摘要:
A manufacturing method for a semiconductor device, which can attain a low ion voltage in a manufacturing method for a semiconductor device involving a process for forming a groove by etching prior to selective oxidation, selectively oxidizing a region including the groove and thereby making a channel part of the groove, is disclosed. A groove part is thermally oxidized by using a silicon nitride film as a mask. A LOCOS oxide film is formed by this thermal oxidation, and concurrently a U-groove is formed on the surface of an n.sup.- -type epitaxial layer eroded by the LOCOS oxide film, and the shape of the U-groove is fixed. A curve part formed during a chemical dry etching process remains as a curve part on the side surface of the U-groove. Then, an n.sup.+ -type source layer is formed by means of thermal diffusion to a junction thickness of 0.5 to 1 .mu.m, and a channel is set up as well. The junction depth obtained by this thermal diffusion is set up more deeply than the curve part which is formed during the above etching and remains on the side surface of the U-groove after the above selective thermal oxidation.
摘要:
A vertical type power MOSFET remarkably reduces its ON-resistance per area. A substantial groove formation in which a gate structure is constituted is performed beforehand utilizing the LOCOS method before the formation of a p-type base layer and an n.sup.+ -type source layer. The p-type base layer and the n.sup.+ -type source layer are then formed by double diffusion in a manner of self-alignment with respect to a LOCOS oxide film, simultaneously with which channels are set at sidewall portions of the LOCOS oxide film. Thereafter the LOCOS oxide film is removed to provide a U-groove so as to constitute the gate structure. Namely, the channels are set by the double diffusion of the manner of self-alignment with respect to the LOCOS oxide film, so that the channels, which are set at the sidewall portions at both sides of the groove, provide a structure of exact bilateral symmetry, there is no positional deviation of the U-groove with respect to the base layer end, and the length of the bottom face of the U-groove can be made minimally short. Therefore, the unit cell size is greatly reduced, and the ON-resistance per area is greatly decreased.
摘要:
A semiconductor device with a lateral element includes a semiconductor substrate, first and second electrodes on the substrate, and a resistive field plate extending from the first electrode to the second electrode. The lateral element passes a current between the first and second electrodes. A voltage applied to the second electrode is less than a voltage applied to the first electrode. The resistive field plate has a first end portion and a second end portion opposite to the first end portion. The second end portion is located closer to the second electrode than the first end portion. An impurity concentration in the second end portion is equal to or greater than 1×1018 cm−3.
摘要:
A semiconductor device having a lateral semiconductor element includes a semiconductor substrate, a first electrode on the substrate, a second electrode on the substrate, and an isolation structure located in the substrate to divide the substrate into a first island and a second island electrically insulated from the first island. The lateral semiconductor element includes a main cell located in the first island and a sense cell located in the second island. The main cell causes a first current to flow between the first electrode and the second electrode so that the first current flows in a lateral direction along the surface of the substrate. The first current is detected by detecting a second current flowing though the sense cell.
摘要:
A television (100) includes: a receiving section (202) for receiving additional information which is added to and transmitted along with a broadcast content; a processing section (222) for processing additional information so that a mobile device (120) can obtain information that is specific to unique information which the television (100) has; and a transmitting section (224) for transmitting processed additional information.
摘要:
A semiconductor device includes: a SOI substrate; a semiconductor element having first and second impurity layers disposed in an active layer of the SOI substrate, the second impurity layer surrounding the first impurity layer; and multiple first and second conductive type regions disposed in a part of the active layer adjacent to an embedded insulation film of the SOI substrate. The first and second conductive type regions are alternately arranged. The first and second conductive type regions have a layout, which corresponds to the semiconductor element.
摘要:
A semiconductor device with a lateral element includes a semiconductor substrate, first and second electrodes on the substrate, and a resistive field plate extending from the first electrode to the second electrode. The lateral element passes a current between the first and second electrodes. A voltage applied to the second electrode is less than a voltage applied to the first electrode. The resistive field plate has a first end portion and a second end portion opposite to the first end portion. The second end portion is located closer to the second electrode than the first end portion. An impurity concentration in the second end portion is equal to or greater than 1×1018 cm−3.
摘要:
A N-channel lateral insulated-gate bipolar transistor includes a semiconductor substrate, a drift layer, a collector region, a channel layer, an emitter region, a gate insulation film, a gate electrode, a collector electrode, an emitter electrode. The collector region includes a high impurity concentration region having a high impurity concentration and a low impurity concentration region having a lower impurity concentration than the high impurity concentration region. The collector electrode is in ohmic contact with the high impurity concentration region and in schottky contact with the low impurity concentration region.
摘要:
In a transmission device for differential communication, a first cathode-side element part is coupled between a first communication line and a cathode-side power supply line, a second cathode-side element part is coupled between a second communication line and the cathode-side power supply line, a first anode-side element part is coupled between the first communication line and an anode-side power supply line, and a second anode-side element part is coupled between the second communication line and the anode-side power supply line. A driving portion drives the element parts based on transmission data input from an outside. A target potential generating portion generates target potentials of the element parts based on potentials of the first communication line and the second communication line.