Abstract:
Devices, systems, and methods incorporate the most-used functions of a electrical stimulator's controller into a small, thin pocket controller that is not only comfortable to carry in a pocket, but can also be attached to a key ring, lanyard, or other such carrying device for ease of daily use. A separate patient controller charger is used to charge and control the implanted medical device.
Abstract:
An elevated feedthrough is attachable to a top or a side of an active implantable medical device. The feedthrough includes a conductive ferrule and a dielectric substrate. The dielectric substrate is defined as comprising a body fluid side and a device side disposed within the conductive ferrule. The dielectric substrate includes a body fluid side elevated portion generally raised above the conductive ferrule. At least one via hole is disposed through the dielectric substrate from the body fluid side to the device side. A conductive fill is disposed within the at least one via hole forming a hermetic seal and electrically conductive between the body fluid side and the device side. A leadwire connection feature is on the body fluid side electrically coupled to the conductive fill and disposed adjacent to the elevated portion of the dielectric substrate.
Abstract:
Decoupling circuits are provided which transfer energy induced from an MRI pulsed RF field to the housing for an active implantable medical device (AIMD) which serves as an energy dissipating surface. A novel L-C input trap filter is provided which has a dual function. The L-C trap acts as a broadband low pass EMI filter while at the same time also acts as an L-C trap in order to divert induced RF energy from the lead to the housing of the AIMD.
Abstract:
An EMI filtered terminal assembly including at least one conductive terminal pin, a feedthrough capacitor, and a counter-bore associated with a passageway through the capacitor is described. Preferably, the feedthrough capacitor having counter-drilled or counter-bored holes on its top side is first bonded to a hermetic insulator. The counter-drilled or counter-bore holes in the capacitor provide greater volume for the electro-mechanical attachment between the capacitor and the terminal pin or lead wire, permitting robotic dispensing of, for example, thermal-setting conductive adhesive.
Abstract:
A shielded component or network for an active medical device (AMD) implantable lead includes (1) an implantable lead having a length extending from a proximal end to a distal end, all external of an AMD housing, (2) a passive component or network disposed somewhere along the length of the implantable lead, the passive component or network including at least one inductive component having a first inductive value, and (3) an electromagnetic shield substantially surrounding the inductive component or the passive network. The first inductive value of the inductive component is adjusted to a account for a shift in its inductance to a second inductive value when shielded.
Abstract:
A connector assembly for a medical device for connecting the medical device to a relatively large plurality of electrodes that can support, in some cases, 24 or more stimulation channels for stimulating one or more stimulation regions of a patient. Also the medical device and the stimulation system and the stimulation therapy utilizing the connector assembly.
Abstract:
A feedthrough flat-through capacitor includes a capacitor having a first and second set of electrode plates, a first feedthrough passageway through the capacitor, a first lead disposed within the first feedthrough passageway and conductively coupled to the first set of electrode plates, a second feedthrough passageway through the capacitor disposed remote from the first feedthrough passageway, and a second lead disposed within the second feedthrough passageway and conductively coupled to the first set of electrode plates. The second set of electrode plates are typically conductively coupled to a ground. An EMI shield may be provided to electromagnetically isolate the first lead from the second lead.
Abstract:
A keyless entry system for an automobile is described. The keyless entry system comprises a radio frequency identification (RFID) tag that has been programmed to selectively unlock an automobile when the RFID tag is within a predetermined distance and, optionally, to lock the automobile when the RFID is outside the predetermined distance. An interrogator housed on or within the automobile comprises an actuatable RF signal generator for transmitting an electromagnetic signal and a time-out circuit. Regardless whether the programmed RFID tag is detected, or not, the RF signal generator transmits a first electromagnetic signal having a first limited total continuous transmit time, followed by an interim period of a defined length where the time-out circuit renders the interrogator incapable of transmitting the electromagnetic signal, followed by the RF signal generator transmitting a second electromagnetic signal having a second limited total continuous transmit time.
Abstract:
A biomedical conductor assembly adapted for at least partial insertion in a living body. The conductor assembly includes a plurality of the first electrical conductors each covered with an insulator and helically wound in a first direction to form an inner coil with a lumen. A plurality of second electrical conductors each including a plurality of un-insulated wires twisted in a ropelike configuration around a central axis to form a plurality of cables. Each cable is covered with an insulator and helically wound in a second opposite direction forming an outer coil in direct physical contact with the inner coil. The inner and outer coils are covered by an insulator. A method of making the conductor assembly and implanting a neurostimulation system is also disclosed.
Abstract:
A connector assembly for a medical device for connecting an IPG to a connector assembly for connecting the IPG to a relatively large plurality of electrodes that can support 24 or more stimulation channels for stimulating one or more stimulation regions of a patient. Also the IPG and the stimulation system and the stimulation therapy utilizing the connector assembly.