Abstract:
A flange coupling for joining multi-layer apparatus sections or pipeline sections, in which corrosive and hot gases are handled, consists of an inner lining of glass which is resistant to thermal shock, or of quartz, which is surrounded by an outer metal jacket, the interspace between the outer jacket and the lining being packed with a heat-insulating material.In the region of the ends of the lining, refractory bricks which surround the lining, support it but do not touch it over the entire surface are provided between the lining and the outer jacket; the lining, at one or both ends, does not terminate flush with the refractory bricks, and the refractory bricks surrounding the lining terminate at least substantially flush with the surrounding outer jacket, the two ends of which each merge into a flange coupling.
Abstract:
Method and apparatus for making vitreous silica of high purity including producing a melt of liquid silicon in a first chamber, mixing the liquid silicon with carbon dioxide in an upper zone of a second chamber to produce silicon monoxide, mixing the silicon monoxide with oxygen in a lower zone of the second chamber producing silicon dioxide in gaseous form, condensing the silicon dioxide on the wall of the second chamber, and withdrawing the resultant tube of vitreous silica from the lower end of the second chamber. The apparatus is lined with silica to prevent introduction of impurities. The liquid silicon is produced by mixing hydrogen and trichlorosilane.
Abstract:
In a glass or ceramic-lined reactor vessel for use with corrosive contents, to repair major damage of a nozzle, damaged portions of the nozzle are first removed as by cutting torch, the remaining nozzle neck wall is edge-tapered for welding, a replacement nozzle opening comprising a flange is provided and attached by welding inside and out, any surplus inside bead or rod slag being brought to a conforming surface; the nozzle and adjacent portions of the reactor vessel are sheathed with a metal cover, the metal being from one-eighth to one-half inch, both inclusive, in thickness, and being such as is substantially inert under the conditions of use of the equipment being repaired; the cover comprising essentially an outer face disc and an inner face disc each defining a threaded central opening, a tubular nozzle interior sheath, the ends of the nozzle interior sheath and the inner aspects of the openings of the discs being cooperatively threaded; any space otherwise void between repair sheath and nozzle interior surface being filled with a curable resin filler that is inert and insoluble when cured; the nozzle being drawn securely into place and cooperating deformable chemically gaskets being deformingly seated, by tightening of especially the threaded outer face disc onto the threaded tubular sheath.
Abstract:
Industrial equipment such as tanks, rotating drum granulators and driers, prilling towers and metal storage bins are lined with a glass fiber reinforced resin coating bonded to a surface which has been sandblasted in an overall pattern covering less than one-third of the total area. The combination of pattern sandblasting with high adhesion and ductility of the resin coating reduces sandblasting costs and increases resistance of the structure to vibration and bending stresses.
Abstract:
A glass lined reaction tank for chemical and pharmaceutical industries and a manufacturing method thereof. One-step molding technical standards for manufacturing iron blanks of the glass lined reaction tanks are deeply developed, an overall structure of a flanged big flange of a tank body and a tank cover matching with the tank body are innovated, and nominal pressure of the big flange and the sealing performance of a tank mouth are perfectly improved. By using a new structurally-combined precise controlled internal heating type electric furnace and an intelligent temperature program control/adjustment/recording instrument, heating temperature of an overall glass lining layer on an inner wall of the tank body is more accurately controlled to be the same, and a synchronous, integral and controlled sintering core technique is realized.
Abstract:
Disclosed is a hydrothermal synthesis device for continuously preparing an inorganic slurry using a hydrothermal method. The hydrothermal synthesis device includes a mixer to mix at least one precursor solution for preparing an inorganic material, injected via at least one supply tube, to prepare an intermediate slurry, a connection tube provided at a side of the mixer, continuously discharging the prepared intermediate slurry to a reactor, and having an inner surface contacting a precursor solution mixture on which abrasive polishing has been performed, and the reactor performing hydrothermal reaction of the intermediate slurry supplied from the connection tube by receiving a liquid stream heated to supercritical or subcritical conditions using a heat exchanger and connected to the connection tube into which the intermediate slurry prepared from the mixer is introduced and to at least one injection tube into which the heated liquid stream is injected.
Abstract:
The present invention relates, in general, to the purification of boron trichloride (BCl3). More particularly, the invention relates to a process for minimizing silicon tetrachloride (SiCl4) formation in BCl3 production and/or the removal of SiCl4 in BCl3 product stream by preventing/minimizing the silicon source in the reaction chambers. In addition, a hydride material may be used to convert any SiCl4 present to SiH4 which is easier to remove. Lastly freeze separation would replace fractional distillation to remove SiCl4 from BCl3 that has been partially purified to remove light boilers.
Abstract:
An industrial microwave ultrasonic reactor has an inner wall liner. A microwave generation device is formed by microwave units distributed on an outer sidewall, or by a microwave pipe disposed outside the reactor and microwave units distributed on the microwave pipe. One end of the microwave pipe communicates with the bottom of the reactor via a connection pipe I, and the other end communicates with the top via a return pipe. A shield is disposed outside the microwave generation device to separate the microwave units from the outside, and a heat removal device is disposed outside the shield. An ultrasonic wave generation device is formed by 10 to 30 sets of ultrasonic pulse units disposed at intervals along the outer sidewall. Each set has 10 to 50 members distributed along the circumferential direction of the reactor. A stirring shaft is fixed below a stirring motor and extends into the reactor.