Abstract:
The objective of the present invention is to prevent an increase in the amount of oxygen stored in a catalyst due to a fuel cut by performing a rich spike, even when the fuel is again supplied after a fuel cut in some of the cylinders. When a prescribed fuel cut condition has been satisfied (t1, t6), first, the fuel to some of the cylinders is cut, and after a prescribed period of time (A1) has elapsed, the supply of fuel to all of the cylinders is cut (A2). When the fuel to only some of the cylinders has been cut and a prescribed fuel cut recovery condition has been satisfied (t3), fuel is again supplied to the aforementioned cylinders, and during a prescribed period (C1) after the supply of the fuel has been restarted a rich spike (D1) is executed, whereby the amount of fuel being supplied is increased and the exhaust air-fuel ratio is controlled so as to be richer than the stoichiometric air-fuel ratio.
Abstract:
An aftertreatment system and method treats exhaust gasses produced by an internal combustion process or a similar process. The aftertreatment system includes an aftertreatment module having a sleeve extending between a first end and a second end. One or more aftertreatment bricks are axially inserted into a sleeve opening disposed in the first end of the sleeve. To prevent the aftertreatment bricks from unintentionally exiting the sleeve, a captive ring is disposed around the first end of the sleeve as a loose fitting collar. The captive ring is restrained on the sleeve by a circumferential bead protruding about the first end. The captive ring can couple with a retention ring placed adjacent the first end. When coupled to the captive ring, a portion of the retention ring extends partially across and blocks the sleeve opening, preventing the aftertreatment brick from exiting the sleeve.
Abstract:
A V-type engine includes two exhaust manifolds connected to two cylinder banks. First and second exhaust ports, respectively provided in the two cylinder banks, are disposed at an inner side of V-shaped lines. Each exhaust manifold includes N branch pipes and a collecting pipe, where N is an integer not less than 2. The N branch pipes are respectively connected to N exhaust ports including at least one of the first exhaust ports and at least one of the second exhaust ports. The collecting pipe is disposed adjacent to N cylinders that are aligned in a direction parallel or substantially parallel to a crank axis direction and extends from one end to the other end of the N cylinders.
Abstract:
Proposed is a dosing module for injecting liquid urea-water solution into the exhaust tract of an internal combustion engine, which dosing module is composed of two pumps, specifically a delivery pump (5) and an aeration pump (15). This permits firstly the injection of urea-water solutions and secondly safe and reliable ventilation of the system when the internal combustion engine is to be shut down.
Abstract:
An object of the invention is to prevent a situation in which failure diagnosis for an exhaust system component in an internal combustion engine cannot be completed from continuing for an unduly long period of time. A warm-up system for an exhaust system of an internal combustion engine according to the invention includes a warm-up control performing unit that performs warm-up control for warming up an exhaust system component upon start-up of the internal combustion engine and a failure diagnosis performing unit that performs failure diagnosis for the exhaust system component after the completion of warm-up of the exhaust system component. If a situation in which the operation of the internal combustion engine is stopped after the start of operation of the internal combustion engine before the completion of the failure diagnosis for the exhaust system component performed by the failure diagnosis performing unit has been repeated for a predetermined period of time, the warm-up control performing unit changes the warm-up control performed upon start-up of the internal combustion engine after the predetermined period of time has elapsed to a control that can raise the temperature of the exhaust system component more quickly than the warm-up control performed during the aforementioned predetermined period.
Abstract:
A system includes a turbine combustor, a turbine, an exhaust gas compressor, a flow path, and at least one catalytic converter. The turbine is driven by combustion products from the turbine combustor. The exhaust compressor is configured to compress and route an exhaust gas from the turbine to the turbine combustor. The flow path leads from the exhaust gas compressor, through turbine combustor, and into the turbine. The catalytic converter is disposed along the flow path.
Abstract:
Disclosed embodiments include methods of removing carbon dioxide from combustion gas from an engine of a vehicle, systems for removing carbon dioxide from combustion gas from an engine of a vehicle, vehicles, methods of managing carbon dioxide emissions from an engine of a vehicle, and computer software program products for managing carbon dioxide emissions from an engine of a vehicle.
Abstract:
The purpose of the present invention is to provide an exhaust gas purification catalyst which can decrease a NOx reduction temperature and comprises rhodium and gold. An exhaust gas purification catalyst which carries two-element microparticles each comprising rhodium and gold, said catalyst being characterized in that the rhodium and the gold are phase-separated from each other and the content ratio of the rhodium to the gold (i.e., rhodium:gold) is (30-99.9 at. %):(70-0.1 at. %) in the two-element microparticles.
Abstract:
Whether or not an electrically heated catalyst is normal is detected by accurately detecting whether the temperature of the electrically heated catalyst has gone up. To this end, provision is made for an air fuel ratio control device that adjusts an air fuel ratio of an exhaust gas flowing into the electrically heated catalyst to a rich air fuel ratio, at the time of starting of an internal combustion engine, a downstream side detection device that is arranged at the downstream side of the electrically heated catalyst and detects a concentration of oxygen in the exhaust gas, and a determination device that determines whether the electrically heated catalyst is electrically energized, based on the time at which the oxygen concentration detected by the downstream side detection device changes to a value indicating a rich air fuel ratio at the time when the air fuel ratio of the exhaust gas is adjusted by the air fuel ratio control device to the rich air fuel ratio, after starting of the internal combustion engine.
Abstract:
There is provided a system for storing and injecting an additive into exhaust gas from an internal combustion engine, the system comprising a tank for storing the additive, an injector, and a pump for driving the additive from the tank to the injector via an injection channel, the system also comprising a purge device mounted between the pump and the injection channel. The purge device comprises a chamber and piston moving equipment slidably mounted in the chamber, the purge device being designed so that:movement of the moving equipment in one of its sliding directions causes a passage to open into the chamber for passing the additive to the injection channel; andmovement of the moving equipment in its other sliding direction creates suction within the chamber, which causes at least some of the additive contained in the injection channel to return into the chamber.